精英家教網 > 高中數學 > 題目詳情

在實數集R上的函數f(x)如果滿足:對任意x1,x2∈R,都有,則稱f(x)為R上的凹函數.已知二次函數f(x)=ax2+x(a∈R且a≠0),(1)求證:a>0時,函數f(x)為凹函數;(2)如果x∈(0,1]時,|f(x)|≤1恒成立,試求實數a的取值范圍.

答案:
解析:

  (1)證明:

  ,,有

  

  

  故函數為R上的凹函數

  (2)恒成立,

  恒成立.

  時恒成立.

  時取得最小值0,,故


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知定義在實數集R上的函數f(x)=ax3+bx2+cx+d,其中a,b,c,d是實數.
(1)若函數f(x)在區(qū)間(-∞,-1)和(3,+∞)上都是增函數,在區(qū)間(-1,3)上是減函數,并且f(0)=-7,f′(0)=-18,求函數f(x)的表達式;
(2)若a,b,c滿足b2-3ac<0,求證:函數f(x)是單調函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在實數集R上的函數f(x),如果存在函數g(x)=Ax+B(A,B為常數)使得f(x)≥g(x)對任意的x∈R都成立,則稱
g(x)為函數f(x)的一個承托函數.以下說法
(1)函數f(x)=x2-2x不存在承托函數;
(2)函數f(x)=x3-3x不存在承托函數;
(3)函數f(x)=
2x
x2-x+1
不存在承托函數;
(4)g(x)=1為函數f(x)=x4-2x3+x2+1的一個承托函數;
(5)g(x)=x為函數f(x)=ex-1的一個承托函數.
中正確的個數為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在實數集R上的函數f(x),如果存在函數g(x)=Ax+B(A,B為常數),使得f(x)≥g(x)對一切實數x都成立,那么稱g(x)為函數f(x)的一個承托函數.
下列說法正確的有:
①②
①②
.(寫出所有正確說法的序號)
①對給定的函數f(x),其承托函數可能不存在,也可能有無數個;
②g(x)=ex為函數f(x)=ex的一個承托函數;
③函數f(x)=
x
x2+x+1
不存在承托函數;
④函數f(x)=
1
5x2-4x+11
,若函數g(x)的圖象恰為f(x)在點p(1,
1
2
)
處的切線,則g(x)為函數f(x)的一個承托函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在實數集R上的函數f(x)=
1
3
x3+
1
2
(a-4)x2+2(2-a)x+a
與y軸的交點為A,點A到原點的距離不大于1;
(1)求a的范圍;
(2)是否存在這樣的區(qū)間,使對任意a,f(x)在該區(qū)間上為增函數?若存在,求出該區(qū)間,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在實數集R上的函數f(x)滿足f(x)•f(x+2)=6,若f(3)=2,則f(2013)的值為
3
3

查看答案和解析>>

同步練習冊答案