已知分別是橢圓的左右焦點(diǎn),過垂直與軸的直線交橢圓于兩點(diǎn),若是銳角三角形,則橢圓離心率的范圍是(   )
A.B.C.D.
C

試題分析:為銳角三角形,只需保證為銳角即可。根據(jù)橢圓的對稱性,只需保證即可,而,即,整理得,解得,又因?yàn)闄E圓的離心率小于,故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左右焦點(diǎn)分別為,且經(jīng)過點(diǎn),為橢圓上的動(dòng)點(diǎn),以為圓心,為半徑作圓.
(1)求橢圓的方程;
(2)若圓軸有兩個(gè)交點(diǎn),求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:的離心率等于,點(diǎn)P在橢圓上。
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為,過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),是否存在定直線,使得的交點(diǎn)總在直線上?若存在,求出一個(gè)滿足條件的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),過F1作與x軸不重合的直線l交橢圓于A,B兩點(diǎn).
(I)若ΔABF2為正三角形,求橢圓的離心率;
(II)若橢圓的離心率滿足,為坐標(biāo)原點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知<4,則曲線有(      )
A.相同的準(zhǔn)線B.相同的焦點(diǎn)C.相同的離心率D.相同的長軸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓的方程;
(2)若過點(diǎn)C(-1,0)且斜率為的直線與橢圓相交于不同的兩點(diǎn),試問在軸上是否存在點(diǎn),使是與無關(guān)的常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知得頂點(diǎn)、分別是離心率為的圓錐曲線的焦點(diǎn),頂點(diǎn)在該曲線上,一同學(xué)已正確地推得,當(dāng)時(shí)有 ,類似地,當(dāng)時(shí),有               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線所經(jīng)過的定點(diǎn)恰好是橢圓的一個(gè)焦點(diǎn),且橢圓上的點(diǎn)到點(diǎn)的最大距離為8.則橢圓的標(biāo)準(zhǔn)方程為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)e是橢圓=1的離心率,且e∈(,1),則實(shí)數(shù)k的取值范圍是 (  )
A.(0,3)B.(3,)
C.(0,3)∪(,+∞)D.(0,2)

查看答案和解析>>

同步練習(xí)冊答案