直線y=x+b與拋物線y2=2x,當(dāng)b=
 
時(shí),有且只有一個(gè)公共點(diǎn);當(dāng)b∈
 
時(shí),有兩個(gè)不同的公共點(diǎn);當(dāng)b∈
 
時(shí),無公共點(diǎn).
分析:先把直線方程代入拋物線方程消去x,求得方程得判別式,分別根據(jù)判別式等于0,大于0和小于0求得b的范圍.
解答:解:
y=x+b
y 2=2x
消去x得y2-2y+2b=0
△=4-8b=0,即b=
1
2
時(shí),直線與拋物線有一個(gè)公共點(diǎn);
△=4-8b>0,即b<
1
2
時(shí),即b∈(-∞,
1
2
)時(shí),直線與拋物線有二個(gè)公共點(diǎn);
△=4-8b<0,即b>
1
2
時(shí),即b∈(
1
2
,+∞)時(shí),直線與拋物線沒有個(gè)公共點(diǎn);
故答案為
1
2
,(-∞,
1
2
),(
1
2
,+∞).
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問題.直線與圓錐曲線有無公共點(diǎn)或有幾個(gè)公共點(diǎn)的問題,實(shí)際上是研究它們的方程組成的方程是否有實(shí)數(shù)解成實(shí)數(shù)解的個(gè)數(shù)問題,此時(shí)要注意用好分類討論和數(shù)形結(jié)合的思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直L1:2x-y=0,L2:x-2y=0.動(dòng)圓(圓心為M)被L1L2截得的弦長分別為8,16.
(Ⅰ)求圓心M的軌跡方程M;
(Ⅱ)設(shè)直線y=kx+10與方程M的曲線相交于A,B兩點(diǎn).如果拋物y2=-2x上存在點(diǎn)N使得|NA|=|NB|成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年江西省高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題

(本小題滿分13分)

已知雙曲線C: =1(a>0,b>0)的離心率為焦點(diǎn)到漸近線的距離為

(1)求雙曲線C的方程;

(2)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在拋物

線y2=4 x上,求m的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直L1:2x-y=0,L2:x-2y=0.動(dòng)圓(圓心為M)被L1L2截得的弦長分別為8,16.
(Ⅰ)求圓心M的軌跡方程M;
(Ⅱ)設(shè)直線y=kx+10與方程M的曲線相交于A,B兩點(diǎn).如果拋物y2=-2x上存在點(diǎn)N使得|NA|=|NB|成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省許昌市長葛三高高考數(shù)學(xué)調(diào)研試卷1(理科)(解析版) 題型:解答題

已知直L1:2x-y=0,L2:x-2y=0.動(dòng)圓(圓心為M)被L1L2截得的弦長分別為8,16.
(Ⅰ)求圓心M的軌跡方程M;
(Ⅱ)設(shè)直線y=kx+10與方程M的曲線相交于A,B兩點(diǎn).如果拋物y2=-2x上存在點(diǎn)N使得|NA|=|NB|成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案