已知數(shù)列{an}的前n項(xiàng)和為Sn,且an是Sn與2的等差中項(xiàng),而數(shù)列{bn}的首項(xiàng)為1,bn+1-bn-2=0.
(1)求a1和a2的值;
(2)求數(shù)列{an},{bn}的通項(xiàng)an和bn;
(3)設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn
(1)∵an是Sn與2的等差中項(xiàng),
∴Sn=2an-2,∴a1=S1=2a1-2,解得a1=2,a1+a2=S2=2a2-2,解得a2=4;
(2)∵Sn=2an-2①,∴Sn-1=2an-1-2(n≥2)②,
①-②得:an=2an-2an-1,即an=2an-1(n≥2,n∈N*),
∵a1≠0,∴
an
an-1
=2,(n≥2,n∈N*)
,即數(shù)列{an}是等比數(shù)列.
∵a1=2,∴an=a1qn-1=2×2n-1=2n
由已知得bn+1-bn=2,即數(shù)列{bn}是等差數(shù)列,
又b1=1,∴bn=b1+(n-1)d=1+2(n-1)=2n-1;
(3)由cn=an•bn=(2n-1)2n
Tn=a1b1+a2b2+…+anbn=1×2+3×22+5×23+…+(2n-1)2n③,
2Tn=1×22+3×23+…+(2n-3)2n+(2n-1)2n+1④,
③-④得:-Tn=1×2+(2×22+2×23+…2×2n)-(2n-1)2n+1
即:-Tn=1×2+(23+24+…2n+1)-(2n-1)2n+1=2+
23(1-2n-1)
1-2
-(2n-1)2n+1

Tn=(2n-3)2n+1+6
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案