已知點Q(2
2
,0)
,點P(x0,y0)為拋物線y=
1
4
x2
上的動點,則y0+|PQ|的最小值為
 
考點:拋物線的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:根據(jù)拋物線的定義得到y(tǒng)0+|PQ|=d-1+|PQ|=|PF|+|PQ|-1≥|FQ|-1=2,從而得到答案.
解答: 解:用拋物線的定義:
焦點F(0,1),準線 y=-1,設P到準線的距離為d
y0+|PQ|=d-1+|PQ|=|PF|+|PQ|-1≥|FQ|-1=2
(當且僅當F、Q、P共線時取等號)
故y0+|PQ|的最小值是2.
故答案為:2.
點評:本題考查了拋物線的定義,拋物線的性質,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex-x2的導函數(shù)為f′(x),y=f(x)與y=f′(x)在同一直角坐標系下的部分圖象如圖所示,若方程f′(x)-f(a)=0在x∈(-∞,a]上有兩解,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在下列四個命題中,其中正確命題的是( 。
A、有兩個面互相平行,其余各面都是平行四邊形的多面體是棱柱
B、有一個面是多邊形,其余各面都是三角形的幾何體叫棱錐
C、有兩個面互相平行,其余各面都是梯形的多面體是棱臺
D、用平行于棱錐底面的平面去截棱錐,底面與截面之間的部分,這樣的多面體叫做棱臺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ex-a
ex+1
是奇函數(shù),若關于x的方程f(x)=lgt有解,求t的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1經過點A(3,m),B(m-1,2),直線l2經過點C(1,2),D(-2,m+2).
(1)當m=6時,試判斷直線l1與l2的位置關系;
(2)若l1⊥l2,試求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(2,0),圓C:x2+y2-8y=0,過P的動直線l與圓C交于A,B兩點,線段AB的中點為M,當|OP|=|OM|時(O為坐標原點),求直線l的方程及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

跳傘塔CD高h,在塔頂C測得地面上兩點A,B的俯角分別是60°和45°,又測得∠ADB=30°,則AB的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的表面積等于( 。
A、12πcm2
B、15πcm2
C、24πcm2
D、30πcm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=kx在定義域內是減函數(shù),則k的取值范圍是
 

查看答案和解析>>

同步練習冊答案