已知過(guò)點(diǎn)P(0,-1)的直線(xiàn)l與拋物線(xiàn)x2=4y相交于A(x1,y1)、B(x2,y2)兩點(diǎn),l1、l2分別是拋物線(xiàn)x2=4y在A、B兩點(diǎn)處的切線(xiàn),M、N分別是l1、l2與直線(xiàn)y=-1的交點(diǎn).
(1)求直線(xiàn)l的斜率的取值范圍;
(2)試比較|PM|與|PN|的大小,并說(shuō)明理由.
(1)依題意,直線(xiàn)l的斜率存在,設(shè)直線(xiàn)l的方程為y=kx-1.
由方程
y=kx-1
x2=4y.
,消去y得x2-4kx+4=0.     ①
∵直線(xiàn)l與拋物線(xiàn)x2=4y相交于A,B兩點(diǎn),
∴△=16k2-16>0,解得k>1或k<-1.
故直線(xiàn)l斜率的取值范圍為(-∞,-1)∪(1,+∞).
(2)可以斷定|PM|=|PN|.
解法1:∵x1,x2是方程①的兩實(shí)根,
x1+x2=4k
x1x2=4.
,∴x1≠0,x2≠0.
y=
1
4
x2
,∴y′=
1
2
x

y1=
1
4
x21
,∴切線(xiàn)l1的方程為y=
1
2
x1(x-x1)+
1
4
x12

令y=-1,得點(diǎn)M的坐標(biāo)為(
x12-4
2x1
,-1)

|PM|=|
x12-4
2x1
|

同理,可得|PN|=|
x22-4
2x2
|

|PM|
|PN|
=|
x12-4
2x1
2x2
x22-4
|=|
x12x2-4x2
x1x22-4x1
|=|
4x1-4x2
4x2-4x1
|=1
(x1≠x2).
故|PM|=|PN|.
解法2:∵x1,x2是方程①的兩實(shí)根,
x1+x2=4k
x1x2=4.
,∴x1≠0,x2≠0.
y=
1
4
x2
,∴y′=
1
2
x

y1=
1
4
x21
,
∴切線(xiàn)l1的方程為y=
1
2
x1(x-x1)+
1
4
x12

令y=-1,得點(diǎn)M的坐標(biāo)為(
x12-4
2x1
,-1)

同理可得點(diǎn)N的坐標(biāo)為(
x22-4
2x2
,-1)

x12-4
2x1
+
x22-4
2x2
=
(x1+x2)(x1x2-4)
2x1x2
=0

∴點(diǎn)P是線(xiàn)段MN的中點(diǎn).
故|PM|=|PN|.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,F(xiàn)是拋物線(xiàn)x2=2py(p>0)的焦點(diǎn),點(diǎn)R(1,4)為拋物線(xiàn)內(nèi)一定點(diǎn),點(diǎn)Q為拋物線(xiàn)上一動(dòng)點(diǎn),|QR|+|QF|的最小值為5.
(1)求拋物線(xiàn)方程;
(2)已知過(guò)點(diǎn)P(0,-1)的直線(xiàn)l與拋物線(xiàn)x2=2py(p>0)相交于A(x1,y1)、B(x2,y2)兩點(diǎn),l1、l2分別是該拋物線(xiàn)在A、B兩點(diǎn)處的切線(xiàn),M、N分別是l1、l2與直線(xiàn)y=-1的交點(diǎn).求直線(xiàn)l的斜率的取值范圍并證明|PM|=|PN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•廣州一模)已知過(guò)點(diǎn)P(0,-1)的直線(xiàn)l與拋物線(xiàn)x2=4y相交于A(x1,y1)、B(x2,y2)兩點(diǎn),l1、l2分別是拋物線(xiàn)x2=4y在A、B兩點(diǎn)處的切線(xiàn),M、N分別是l1、l2與直線(xiàn)y=-1的交點(diǎn).
(1)求直線(xiàn)l的斜率的取值范圍;
(2)試比較|PM|與|PN|的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,F(xiàn)是拋物線(xiàn)x2=2py(p>0)的焦點(diǎn),點(diǎn)R(1,4)為拋物線(xiàn)內(nèi)一定點(diǎn),點(diǎn)Q為拋物線(xiàn)上一動(dòng)點(diǎn),|QR|+|QF|的最小值為5.
(1)求拋物線(xiàn)方程;
(2)已知過(guò)點(diǎn)P(0,-1)的直線(xiàn)l與拋物線(xiàn)x2=2py(p>0)相交于A(x1,y1)、B(x2,y2)兩點(diǎn),l1、l2分別是該拋物線(xiàn)在A、B兩點(diǎn)處的切線(xiàn),M、N分別是l1、l2與直線(xiàn)y=-1的交點(diǎn).求直線(xiàn)l的斜率的取值范圍并證明|PM|=|PN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年廣東省實(shí)驗(yàn)中學(xué)考前熱身訓(xùn)練數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖所示,F(xiàn)是拋物線(xiàn)x2=2py(p>0)的焦點(diǎn),點(diǎn)R(1,4)為拋物線(xiàn)內(nèi)一定點(diǎn),點(diǎn)Q為拋物線(xiàn)上一動(dòng)點(diǎn),|QR|+|QF|的最小值為5.
(1)求拋物線(xiàn)方程;
(2)已知過(guò)點(diǎn)P(0,-1)的直線(xiàn)l與拋物線(xiàn)x2=2py(p>0)相交于A(x1,y1)、B(x2,y2)兩點(diǎn),l1、l2分別是該拋物線(xiàn)在A、B兩點(diǎn)處的切線(xiàn),M、N分別是l1、l2與直線(xiàn)y=-1的交點(diǎn).求直線(xiàn)l的斜率的取值范圍并證明|PM|=|PN|.

查看答案和解析>>

同步練習(xí)冊(cè)答案