請選做一題,都做時按先做的題判分,都做不加分.
(1)已知向量
m
=(2sinx,cosx-sinx),
n
=(
3
cosx,cosx+sinx)
,函數(shù)f(x)=
m
n

①求函數(shù)f(x)的最小正周期和值域;
②在△ABC中,角A、B、C所對的邊分別是a、b、c,若f(
A
2
)=2
且a2=bc,試判斷△ABC的形狀.
(2)已知銳角△ABC,sin(A+B)=
3
5
,sin(A-B)=
1
5

①求證:tanA=2tanB;
②設(shè)AB=3,求AB邊上的高CD的長.
分析:(1)①用向量的數(shù)量積將函數(shù)f(x)的解析式表示出來后化簡成y=Asin(ωx+θ)可得答案.
②將
A
2
代入函數(shù)f(x)可求出A的值,再由余弦定理可得到b=c,從而得到答案.
(2)①根據(jù)兩角和與差的正弦公式展開,可得sinAcosB=2cosAsinB,進而得到答案.
②根據(jù)正切函數(shù)的兩角和公式,得出tanA與tanB的關(guān)系,再通過①中tanA=2tanB求出tanA和tanB的值.再通過AB=AD+BD=
CD
tanA
+
CD
tanB
進而求出CD的值.
解答:解:(1)①f(x)=
m
n
=(2sinx,cosx-sinx)•(
3
cosx,cosx+sinx)

=2
3
sinxcosx+cos2x-sin2x=
3
sin2x+cos2x=2sin(2x+
π
6

T=
2
,值域為[-2,2].
②∵f(
A
2
)=2sin(A+
π
6
)=2∴A=
π
3

∵a2=bc
∴cosA=
b2+c2-a2
2bc
=
b2+c2-bc
2bc
=
1
2
∴b=c
∴△ABC為等邊三角形.
(2)①由sin(A+B)=
3
5
,sin(A-B)=
1
5
展開可整理得:
sinAcosB=
2
5
cosAsinB=
1
5

∴sinAcosB=2cosAsinB
∴tanA=2tanB
②∵
π
2
<A+B<π,sin(A+B)=
3
5
,
tan(A+B)=-
3
4
,即
tanA+tanB
1-tanAtanB
=-
3
4
,
又∵tanA=2tanB,∴2tan2B-4tan2B-1=0.
tanB=1+
6
2
tanB=1-
6
2
(舍),
tanA=2tanB=2+
6
,
AB=AD+BD=
CD
tanA
+
CD
tanB
=3
,
CD=2+
6
點評:本題主要考查了三角函數(shù)中的兩角和公式的運用.此類題常綜合三角函數(shù)性質(zhì)、誘導公式、向量等問題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

選做題(請考生在下列兩題中任選一題作答,若兩題都做,則按做的第一題評閱計分)
(1)(極坐標與參數(shù)方程)在直角坐標系xOy中,圓C的參數(shù)方程為
x=-
2
+rcosθ
y=-
2
+rsinθ
(θ為參數(shù),r>0).以O(shè)為極點,x軸正半軸為極軸,并取相同的單位長度建立極坐標系,直線l的極坐標方程為ρsin(θ+
π
4
)=1
.當圓C上的點到直線l的最大距離為4時,圓的半徑r=
1
1

(2)(不等式)對于任意實數(shù)x,不等式|2x+m|+|x-1|≥a恒成立時,若實數(shù)a的最大值為3,則實數(shù)m的值為
4或-8
4或-8

查看答案和解析>>

科目:高中數(shù)學 來源:2010年河南省鄭州外國語學校高考數(shù)學模擬試卷2(理科)(解析版) 題型:解答題

請選做一題,都做時按先做的題判分,都做不加分.
(1)已知向量,函數(shù)
①求函數(shù)f(x)的最小正周期和值域;
②在△ABC中,角A、B、C所對的邊分別是a、b、c,若且a2=bc,試判斷△ABC的形狀.
(2)已知銳角
①求證:tanA=2tanB;
②設(shè)AB=3,求AB邊上的高CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年河南省全真模擬(二)數(shù)學(理科)試題 題型:解答題

(本小題滿分10分)請選做一題,都做時按先做的題判分,都做不加分.

(1)已知向量

①求函數(shù)的最小正周期和值域;

②在△ABC中,角A、B、C所對的邊分別是a、b、c,若,試判斷△ABC的形狀.

(2)已知銳角.

①求證:;

②設(shè),求AB邊上的高CD的長.

 

查看答案和解析>>

科目:高中數(shù)學 來源:河南省鄭州外國語學校2010屆高三考前全真模擬(二)(理) 題型:解答題

 請選做一題,都做時按先做的題判分,都做不加分.

(1)已知向量

①求函數(shù)的最小正周期和值域;

②在△ABC中,角A、B、C所對的邊分別是a、b、c,若,試判斷△ABC的形狀.

(2)已知銳角.

①求證:;

②設(shè),求AB邊上的高CD的長.

 

 

 

 

查看答案和解析>>

同步練習冊答案