(2012•茂名一模)設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,Sn是數(shù)列{an}的前n項和,若S1,S2,S4成等比數(shù)列,則
a4a1
=( 。
分析:由題意可得  S22=S1•S4,化簡可得 d=2a1,代入
a4
a1
化簡可得結(jié)果.
解答:解:數(shù)列{an}是公差不為0的等差數(shù)列,設(shè)公差為d,
S1,S2,S4成等比數(shù)列,則 S22=S1•S4
 ( 2a1+d)2=a1•(4a1+
4×3d
2
),化簡可得 d=2a1
a4
a1
=
a1+3d
a1
=
7a1
a1
=7,
故選D.
點評:本題主要考查等差數(shù)列的通項公式,等差數(shù)列的前n項和公式的應(yīng)用,求出d=2a1,是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名一模)已知函數(shù)f(x)=ln(ex+a)(a為常數(shù))求實數(shù)集R上的奇函數(shù),函數(shù)g(x)=λf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(1)求a的值;
(2)若g(x)≤t2+λt+1在x∈[-1,1]及λ所在的取值范圍上恒成立,求t的取值范圍;
(3)討論關(guān)于x的方程
lnxf(x)
=x2-2ex+m
的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名一模)若f(x)=
f(x-4),x>0
π
4
x
costdt,x≤0
,則f(2012)
=
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名一模)如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:
①-3是函數(shù)y=f(x)的極值點;
②-1是函數(shù)y=f(x)的最小值點;
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(-3,1)上單調(diào)遞增.
則正確命題的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名一模)如圖1,在正三角形ABC中,AB=3,E、F、P分別是AB、AC、BC邊上的點,AE=CF=CP=1.將△AFE沿折起到△A1EF的位置,使平面A1EF與平面BCFE垂直,連接A1B、A1P(如圖2).
(1)求證:PF∥平面A1EB;
(2)求證:平面BCFE⊥平面A1EB;
(3)求四棱錐A1-BPFE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名一模)如圖,設(shè)P是圓x2+y2=2上的動點,點D是P在x軸上的投影.M為線段PD上一點,且|MD|=
2
2
|PD|

(1)當(dāng)點P在圓上運動時,求點M的軌跡C的方程;
(2)已知點F1(-1,0),F(xiàn)2(1,0),設(shè)點A(1,m)(m>0)是軌跡C上的一點,求∠F1AF2的平分線l所在直線的方程.

查看答案和解析>>

同步練習(xí)冊答案