【題目】在中,若,則這三角形一定是( )
A. 等腰三角形 B. 直角三角形 C. 等腰直角三角形 D. 等腰或直角三角形
【答案】B
【解析】
利用內(nèi)角和定理及誘導(dǎo)公式得到sinA=sin(B+C),代入已知等式,利用兩角和與差的正弦函數(shù)公式化簡,再利用多項式乘以多項式法則計算,整理后利用同角三角函數(shù)間的基本關(guān)系變形,再利用兩角和與差的余弦函數(shù)公式化簡后,得到B+C=90°,即可確定出三角形的形狀.
sinA(cosB+cosC)=sinB+sinC,
變形得:sin(B+C)(cosB+cosC)=sinB+sinC,
即(sinBcosC+cosBsinC)(cosB+cosC)=sinB+sinC,
展開得:sinBcosBcosC+sinCcos2B+sinBcos2C+sinCcosCcosB=sinB+sinC,
sinBcosBcosC+sinCcosCcosB=sinB(1-cos2C)+sinC(1-cos2B),
cosBcosC(sinB+sinC)=sinBsin2C+sinCsin2B,即cosBcosC(sinB+sinC)=sinBsinC(sinB+sinC),
∵sinB+sinC≠0,
∴cosBcosC=sinBsinC,
整理得:cosBcosC-sinBsinC=0,即cos(B+C)=0,
∴B+C=90°,
則△ABC為直角三角形.
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動圓經(jīng)過點M(a﹣2,0),N(a+2,0),P(0,﹣2),其中a∈R.
(1)求動圓圓心的軌跡E的方程;
(2)過點P作直線l交軌跡E于不同的兩點A、B,直線OA與直線OB分別交直線y=2于兩點C、D,記△ACD與△BCD的面積分別為S1 , S2 . 求S1+S2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰三角形,AC=2a,BB1=3a,D是A1C1的中點,點E在棱AA1上,要使CE⊥平面B1DE,則AE=_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃2011年在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告費用不超過9萬元.甲、乙電視臺的廣告收費標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘.假定甲、乙兩個電視臺為該公司每分鐘所做的廣告,能給公司帶來的收益分別為0.3 萬元和0.2萬元.問:該公司如何分配在甲、乙兩個電視臺的廣告時間,才能使公司收益最大,最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正四面體D﹣ABC(所有棱長均相等的三棱錐),P、Q、R分別為AB、BC、CA上的點,AP=PB, = =2,分別記二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角為α、β、γ,則( )
A.γ<α<β
B.α<γ<β
C.α<β<γ
D.β<γ<α
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣ )e﹣x(x≥ ).
(Ⅰ)求f(x)的導(dǎo)函數(shù);
(Ⅱ)求f(x)在區(qū)間[ ,+∞)上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{xn}滿足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),證明:當(dāng)n∈N*時,
(Ⅰ)0<xn+1<xn;
(Ⅱ)2xn+1﹣xn≤ ;
(Ⅲ) ≤xn≤ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,過AD的平面分別交PB,PC于M,N兩點.
(1)求證:MN∥BC;
(2)若M,N分別為PB,PC的中點,
①求證:PB⊥DN;
②求二面角P-DN-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在斜三棱柱ABC—A1B1C1中,點D,D1分別為AC,A1C1上的點.
(1)當(dāng)的值等于何值時,BC1∥平面AB1D1;
(2)若平面BC1D∥平面AB1D1,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com