關(guān)于x的一元二次方程mx2-(1-m)x+m=0沒有實數(shù)根,則實數(shù)m的取值范圍是
 
考點:一元二次方程的根的分布與系數(shù)的關(guān)系
專題:計算題,不等式的解法及應(yīng)用
分析:由題意可得它的判別式△=(1-m)2-4m•m<0,且m≠0,由此求得m的取值范圍.
解答: 解:由于關(guān)于x的一元二次方程mx2-(1-m)x+m=0沒有實數(shù)根,
故它的判別式△=(1-m)2-4m•m<0,且m≠0,
求得m>
1
3
或m<-1,
故m的范圍為(-∞,-1)∪(
1
3
,+∞
).
故答案為:(-∞,-1)∪(
1
3
,+∞
).
點評:本題主要考查一元二次方程根的分布情況,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式cosθ(1-x)2-2x(1-x)+2
2
x2sinθ≥0對一切x∈[0,1]恒成立,則θ的取值范圍是( 。
A、[kπ+
π
8
,kπ+
8
](k∈Z)
B、[2kπ+
π
8
,2kπ+
8
](k∈Z)
C、[kπ+
π
12
,kπ+
12
](k∈Z)
D、[2kπ+
π
12
,2kπ+
12
](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA垂直于正方形ABCD所在平面,則以下關(guān)系錯誤的是( 。
A、平面PCD⊥平面PAD
B、平面PCD⊥平面PBC
C、平面PAB⊥平面PBC
D、平面PAB⊥平面PAD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
-
y2
k
=1的離心率e∈(1,2),則實數(shù)k的取值范圍是( 。
A、(0,4)
B、(1,1)
C、(0,2
3
D、(0,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=
1
3
an=
an-1
3an-1+1
(n≥2,n∈N*),
(1)分別求出a2,a3,a4
(2)猜想通項公式an
(3)用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,下列各 式運算結(jié)果為向量
BD1
的是( 。
①(
A1D1
-
A1A
)-
AB
;    
②(
BC
+
BB1
)-
D1C1
;
③(
AD
-
AB
)-
DD1
;  
④(
B1D1
-
A1A
)+
DD1
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=1-log3x的零點是( 。
A、(1,1)B、1
C、(3,0)D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x+2,(x>1)
x2
 
 
,(x≤1)

(Ⅰ)畫出函數(shù)f(x)的圖象,并根據(jù)圖象寫出該函數(shù)的值域和單調(diào)區(qū)間;
(Ⅱ)若f(x)=
1
4
,求x的值;
(Ⅲ)若f(x)>
1
4
,寫出x的取值范圍(本小題直接寫出答案,不必寫過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知7個人坐一排,現(xiàn)在要調(diào)換其中4個人的位置,其余3人不動,則不同的調(diào)換方式有
 
種.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案