過點(diǎn)P(1,1)作直線與雙曲線交于A、B兩點(diǎn),使點(diǎn)P為AB中點(diǎn),則這樣的直線( )
A.存在一條,且方程為2x-y-1=0
B.存在無數(shù)條
C.存在兩條,方程為2x±(y+1)=0
D.不存在
【答案】分析:利用平方差法:設(shè)A(x1,y1),B(x2,y2),代入雙曲線方程然后作差,由中點(diǎn)坐標(biāo)公式及斜率公式可求得直線l的斜率,再用點(diǎn)斜式即可求得直線方程,然后再檢驗(yàn)直線與曲線方程聯(lián)立的方程的解的存在的情況
解答:解:設(shè)A(x1,y1),B(x2,y2),則x1+x2=2,y1+y2=2,
則x12-=1,x22-=1,
兩式相減得(x1-x2)(x1+x2)-(y1-y2)(y1+y2)=0,
,
即kAB=2,
故所求直線方程為y-1=2(x-1),即2x-y-1=0.
聯(lián)立可得2x2-4x+3=0,但此方程沒有實(shí)數(shù)解
故這樣的直線不存在
故選D
點(diǎn)評:本題考查直線與圓錐曲線的位置關(guān)系,考查直線方程的求法,涉及弦中點(diǎn)問題,往往考慮利用“平方差法”加以解決.但是一定要檢驗(yàn)所求直線與橢圓的方程的解的存在情況
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖梯形ABCD,AD∥BC,∠A=90°,過點(diǎn)C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設(shè)線段AB的中點(diǎn)為P,在直線DE上是否存在一點(diǎn)M,使得PM∥面BCD?若存在,請指出點(diǎn)M的位置,并證明你的結(jié)論;若不存在,請說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點(diǎn),且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都七中高二(上)10月段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖梯形ABCD,AD∥BC,∠A=90°,過點(diǎn)C作CE∥AB,AD=2BC,AB=BC,,現(xiàn)將梯形沿CE折成直二面角D-EC-AB.
(1)求直線BD與平面ABCE所成角的正切值;
(2)設(shè)線段AB的中點(diǎn)為P,在直線DE上是否存在一點(diǎn)M,使得PM∥面BCD?若存在,請指出點(diǎn)M的位置,并證明你的結(jié)論;若不存在,請說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省淮南市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案