已知等差數(shù)列{an}的前n項和是Sn=-
1
2
n2-
a8
2
n
,則使an<-2010的最小正整數(shù)n等于
 
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件,推導出an=Sn-Sn-1=-
1
2
(2n-1)
-
a8
2
,令n=8,求出a8=-5,由此能求出使an<-2010的最小正整數(shù)n.
解答: 解:∵Sn=-
1
2
n2-
a8
2
n
,
∴當n≥2時,an=Sn-Sn-1=-
1
2
(2n-1)
-
a8
2
,
令n=8,得a8=-
1
2
(2×8-1)-
a8
2
,解得a8=-5,
∴an=-
1
2
(2n-1)+
5
2
=-n+3,
∵an<-2010,∴-n+3<-2010,
∴n>2013,
∴使an<-2010的最小正整數(shù)n為2014.
故答案為:2014.
點評:本題考查數(shù)列的等差數(shù)列的前n項和的求法及應用,是中檔題,解題時要熟練掌握等差數(shù)列的性質(zhì).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知平面上的動點P(x,y)及兩個定點A(-2,0),B(2,0),直線PA,PB的斜率分別為K1,K2且K1K2=-
1
4

(1)求動點P的軌跡C方程;
(2)設直線L:y=kx+m與曲線 C交于不同兩點,M,N,當OM⊥ON時,求O點到直線L的距離(O為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的首項為10,公差為2,等比數(shù)列{bn}的首項為1,公比為2,n∈N*
(1)求數(shù)列{an}與{bn}的通項公式;
(2)設第n個正方形的邊長為Cn=min{an,bn},求前n個正方形的面積之和Sn.(注:min{a,b}表示a與b的最小值.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P(x,y)滿足
x≤1
y≥1
x-2y+3≥0
,則點P到直線3x-4y-9=0的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①函數(shù)f(x)=4cos(2x+
π
3
)的一個對稱中心為(-
12
,0);
②已知函數(shù)f(x)=min{sinx,cosx},則f(x)的值域為[-1,
2
2
];
③若α、β均為第一象限角,且α>β,則sinα>sinβ.
④f(x)=4sin(2x+
π
3
)(x∈R),由f(x1)=f(x2)=0可得x1-x2是π的整數(shù)倍;
⑤若f(x)是R上的奇函數(shù),它的最小正周期為T,則f(-
T
2
)=0.
其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足
2x-y≤0
x-2y+3≥0
x≥0
,則2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長,則下列結(jié)論正確的是
 

①對任意x∈(-∞,1),都有f(x)<0;
②存在x∈R,使ax,bx,cx不能構成一個三角形的三條邊長;
③若△ABC為鈍角三角形,存在x∈(1,2)使f(x)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足約束條件
x-4y≤-3
3x+5y≤25
x≥1
,那么z=3x+y+5的最大值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O是坐標原點,點A(-2,1),若點M(x,y)為平面區(qū)域
x+y≥2
x≤1
y≤2
上的一個動點,則
OA
OM
的取值范圍是( 。
A、[-1,0]
B、[-1,2]
C、[0,1]
D、[0,2]

查看答案和解析>>

同步練習冊答案