精英家教網 > 高中數學 > 題目詳情

如果S={xÎ N|x<6},A={1,2,3},B={2,4,5},那么A∪B=________.

答案:{0,1,3,4,5}
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為
14
的直線l,使得l和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點,它的短軸是G的實軸、如果S中垂直于l的平行弦的中點的軌跡恰好是G的漸近線截在S內的部分AB,若P(x,y)(y>0)為橢圓上一點,求當△ABP的面積最大時點P的坐標.

查看答案和解析>>

科目:高中數學 來源:2013屆山東省濟寧市高二上學期期末考試理科數學 題型:解答題

(本小題滿分12分)

已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為的直線,使得和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|·|PB|=|PC|2.   

(1)求雙曲線G的漸近線的方程;  

(2)求雙曲線G的方程;

(3)橢圓S的中心在原點,它的短軸是G的實軸.如果S中垂直于的平行弦的中點的軌跡恰好是G的漸近線截在S內的部分AB,若P(x,y)(y>0)為橢圓上一點,求當的面積最大時點P的坐標.

 

 

查看答案和解析>>

科目:高中數學 來源:2013屆吉林省高二上學期質量檢測理科數學 題型:解答題

.已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為的直線,使得和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|·|PB|=|PC|2.   

(1)求雙曲線G的漸近線的方程;  

(2)求雙曲線G的方程;

(3)橢圓S的中心在原點,它的短軸是G的實軸.如果S中垂直于的平行弦的中點的軌跡恰好是G的漸近線截在S內的部分AB,若P(x,y)(y>0)為橢圓上一點,求當的面積最大時點P的坐標.

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為數學公式的直線l,使得l和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點,它的短軸是G的實軸、如果S中垂直于l的平行弦的中點的軌跡恰好是G的漸近線截在S內的部分AB,若P(x,y)(y>0)為橢圓上一點,求當△ABP的面積最大時點P的坐標.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年四川省瀘州市瀘縣二中高二(上)期末數學模擬試卷2(理科)(解析版) 題型:解答題

已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為的直線l,使得l和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|•|PB|=|PC|2
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點,它的短軸是G的實軸、如果S中垂直于l的平行弦的中點的軌跡恰好是G的漸近線截在S內的部分AB,若P(x,y)(y>0)為橢圓上一點,求當△ABP的面積最大時點P的坐標.

查看答案和解析>>

同步練習冊答案