已知函數(shù),其中
.
(1)是否存在實(shí)數(shù),使得函數(shù)
在
上單調(diào)遞增?若存在,求出的
值或取值范圍;否則,請(qǐng)說明理由.
(2)若a<0,且函數(shù)y=f(x)的極小值為,求函數(shù)的極大值。
(1)存在a=;(2)
.
解析試題分析:(1)利用導(dǎo)數(shù)求得函數(shù)單調(diào)遞增滿足的條件;(2)先求出函數(shù)的兩個(gè)極值點(diǎn),根據(jù)a<0確定極大值與極小值點(diǎn),由函數(shù)的極小值求得
,再求出極大值.
(1)∵,
∴.
由可得
≥0.即
在x∈R時(shí)恒成立.
∴Δ=(a+2)2-4(-2a2+4a)≤0,即(3a-2)2≤0,即a=,此時(shí),f′(x)=(x+
)2ex≥0,函數(shù)y=f(x)在R上單調(diào)遞增.(2)由f′(x)=0可得ex[x2+(a+2)x-2a2+4a]=0,解之得x1=-2a,x2=a-2.
當(dāng)a<0時(shí),-2a>a-2,當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下:
x | (-∞,a-2) | a-2 | (a-2,-2a) | -2a | (-2a,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè).
(1)若曲線在點(diǎn)
處的切線方程為
,求
的值;
(2)當(dāng)時(shí),求
的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點(diǎn).已知A,b是實(shí)數(shù),1和-1是函數(shù)f(x)=x3+Ax2+b x的兩個(gè)極值點(diǎn).
(1)求A和b的值;
(2)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)g′(x)=f(x)+2,求g(x)的極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=aln x-ax-3(a∈R).
(1)若a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意的t∈[1,2],函數(shù)g(x)=x3+x2(f′(x)是f(x)的導(dǎo)數(shù))在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(3)求證:×…×
<
(n≥2,n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
,且
在點(diǎn)
處的切線方程為
.
(1)求的值;
(2)若函數(shù)在區(qū)間
內(nèi)有且僅有一個(gè)極值點(diǎn),求
的取值范圍;
(3)設(shè)為兩曲線
,
的交點(diǎn),且兩曲線在交點(diǎn)
處的切線分別為
.若取
,試判斷當(dāng)直線
與
軸圍成等腰三角形時(shí)
值的個(gè)數(shù)并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)若函數(shù)的圖象切x軸于點(diǎn)(2,0),求a、b的值;
(2)設(shè)函數(shù)的圖象上任意一點(diǎn)的切線斜率為k,試求
的充要條件;
(3)若函數(shù)的圖象上任意不同的兩點(diǎn)的連線的斜率小于l,求證
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com