在△ABC中,∠A,∠B,∠C所對的邊分別是a,b,c,已知A=
π
3
,a=
3
,b=1
,則△ABC的形狀是
 
分析:由A的度數(shù),a與b的值,利用正弦定理求出sinB的值,由B的范圍,利用特殊角的三角函數(shù)值求出B的度數(shù),由A和B的度數(shù),由三角形的內(nèi)角和定理求出C的度數(shù),得到C為直角,故三角形ABC為直角三角形.
解答:解:由A=
π
3
,a=
3
,b=1
,
根據(jù)正弦定理
a
sinA
=
b
sinB
得:
sinB=
bsinA
a
=
3
2
3
=
1
2
,
由B為三角形的內(nèi)角,得到B=
π
6
6

當(dāng)B=
6
,A=
π
3
,A+B=
6
>π,與三角形的內(nèi)角和定理矛盾,舍去,
∴B=
π
6
,A=
π
3

則C=
π
2
,即△ABC的形狀是直角三角形.
故答案為:直角三角形
點評:此題考查了正弦定理,以及三角形形狀的判斷,熟練掌握正弦定理是解本題的關(guān)鍵,同時在求角B時注意利用三角形的內(nèi)角和定理檢驗,得到滿足題意的B的度數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂一模)已知函數(shù)f(x)=cos
x
2
-
3
sin
x
2

(I)若x∈[-2π,2π],求函數(shù)f(x)的單調(diào)減區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為角A,B,C的對邊,若f(2A-
2
3
π)=
4
3
,sinB=
5
cosC,a=
2
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•煙臺二模)在△ABC中,a、b、c為角A、B、C所對的三邊.已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=
3
,設(shè)內(nèi)角B為x,周長為y,求y=f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•保定一模)在△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,三邊a、b、c成等差數(shù)列,且B=
π
4
,則(cosA一cosC)2的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中角A、B、C的對邊分別為a、b、c設(shè)向量
m
=(a,cosB),
n
=(b,cosA)且
m
n
,
m
n

(Ⅰ)若sinA+sinB=
6
2
,求A;
(Ⅱ)若△ABC的外接圓半徑為1,且abx=a+b試確定x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,已知a=2,b=
7
,∠B=
π
3
,則△ABC的面積為(  )

查看答案和解析>>

同步練習(xí)冊答案