分析:(1)利用分?jǐn)?shù)指數(shù)冪的運(yùn)算法則、對(duì)數(shù)的運(yùn)算性質(zhì)花間要求的式子,從而求得結(jié)果.
(2)令t=2
x,則y=-3t
2+4t=
-3(t-)2+,由-1≤x≤0,可得
≤2x≤1即t∈[,1].再利用二次函數(shù)的性質(zhì)求出函數(shù)y的最值.
解答:解:(1)0.064
--(-
)
0+16
+0.25
+2log
36-log
312=
(0.43)--1+
(24)+
(0.52)+
log3=0.4
-1-1+8++1=11.
(2)∵y=2
x+2-3•4
x=-3•(2
x)
2+4•2
x,
令t=2
x,則y=-3t
2+4t=
-3(t-)2+,∵-1≤x≤0,∴
≤2x≤1即t∈[,1].
又∵對(duì)稱軸
t=∈[,1],∴當(dāng)
t=,即
x=log2時(shí)ymax=;
當(dāng)t=1,即x=0時(shí),y
min=1.
點(diǎn)評(píng):本題主要考查分?jǐn)?shù)指數(shù)冪的運(yùn)算法則、對(duì)數(shù)的運(yùn)算性質(zhì)、二次函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.