設(shè)首項不為零的等差數(shù)列{an}前n項之和是Sn,若不等式an2+
Sn2n2
≥λa12
對任意an和正整數(shù)n恒成立,則實數(shù)λ的最大值為
 
分析:等差數(shù)列{an}中,首項不為零,前n項和Sn=
n(a1+an
2
;由不等式an2+
Sn2
n2
≥λa12
,得an2+
n2(a1+an2
4
n2
≥λa12,整理得
5
4
(
an
a1
)
2
+
1
2
an
a1
+
1
4
≥λ;若設(shè)t=
an
a1
,求函數(shù)y=
5
4
t2+
1
2
t+
1
4
的最小值,得λ的最大值.
解答:解:在等差數(shù)列{an}中,首項不為零,即a1≠0;則數(shù)列的前n項之和為Sn=
n(a1+an
2
;
由不等式an2+
Sn2
n2
≥λa12
,得an2+
n2(a1+an2
4
n2
≥λa12
5
4
an2+
1
2
a1an+
1
4
a12≥λa12,即
5
4
(
an
a1
)
2
+
1
2
an
a1
+
1
4
≥λ;
設(shè)t=
an
a1
,則y=
5
4
t2+
1
2
t+
1
4
=
5
4
(t+
1
5
)
2
+
1
5
1
5
,
∴λ≤
1
5
,即λ的最大值為
1
5
;
故答案為
1
5
點評:本題考查了數(shù)列與不等式的綜合應(yīng)用,其中用到換元法求得二次函數(shù)的最值,應(yīng)屬于考查計算能力的基礎(chǔ)題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)首項不為零的等差數(shù)列{an}前n項之和是Sn,若不等式an2+
Sn2
n2
≥λa12
對任意{an}和正整數(shù)n恒成立,則實數(shù)λ的最大值為(  )
A、0
B、
1
5
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)首項不為零的等差數(shù)列項之和是,若不等式對任意和正整數(shù)恒成立,則實數(shù)的最大值為(   )

A.0                           B.                          C.                         D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)首項不為零的等差數(shù)列項之和是,若不等式對任意和正整數(shù)恒成立,則實數(shù)的最大值為(   )

A.0                              B.               C.                  D.1

查看答案和解析>>

科目:高中數(shù)學 來源:2012年江蘇省四星高中高三數(shù)學小題訓練(5)(解析版) 題型:解答題

設(shè)首項不為零的等差數(shù)列{an}前n項之和是Sn,若不等式對任意an和正整數(shù)n恒成立,則實數(shù)λ的最大值為   

查看答案和解析>>

同步練習冊答案