【題目】已知橢圓的右焦點(diǎn)為,右準(zhǔn)線為.過點(diǎn)作與坐標(biāo)軸都不垂直的直線與橢圓交于兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),且直線與右準(zhǔn)線交于點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若,求直線的方程;

3)是否存在實(shí)數(shù),使得恒成立?若存在,求實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.

【答案】1;(2;(3)存在,且.

【解析】

1)根據(jù)準(zhǔn)線的定義得,又由,結(jié)合可求得,得橢圓標(biāo)準(zhǔn)方程;

2)由可求得點(diǎn)橫坐標(biāo),設(shè)直線方程為,代入橢圓方程整理后應(yīng)用韋達(dá)定理得,由可得,得直線方程;

3)設(shè),得,由點(diǎn)差法可得,從而得,則可得點(diǎn)坐標(biāo),然后計(jì)算可得

1)由已知可得: ,

解得:

橢圓的標(biāo)準(zhǔn)方程為:.

2)由可知:

,可得:,

設(shè),直線AB的方程為,

聯(lián)立 ,得:

為線段的中點(diǎn),則,

,解得:,

所以直線的方程為.

3)設(shè),,,

,兩方程相減得,即,

,即,

,∴,∵,∴,即,

,,,

,

∴存在滿足題意的,且

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且四個(gè)頂點(diǎn)構(gòu)成的四邊形的面積是

1)求橢圓的方程;

2)已知直線經(jīng)過點(diǎn),且不垂直于軸,直線與橢圓交于,兩點(diǎn),的中點(diǎn),直線與橢圓交于,兩點(diǎn)(是坐標(biāo)原點(diǎn)),求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某總公司在A,B兩地分別有甲、乙兩個(gè)下屬公司同時(shí)生產(chǎn)某種新能源產(chǎn)品(這兩個(gè)公司每天都固定生產(chǎn)50件產(chǎn)品),所生產(chǎn)的產(chǎn)品均在本地銷售.產(chǎn)品進(jìn)入市場(chǎng)之前需要對(duì)產(chǎn)品進(jìn)行性能檢測(cè),得分低于80分的定為次品,需要返廠再加工;得分不低于80分的定為正品,可以進(jìn)入市場(chǎng).檢測(cè)員統(tǒng)計(jì)了甲、乙兩個(gè)下屬公司100天的生產(chǎn)情況及每件產(chǎn)品盈利虧損情況,數(shù)據(jù)如下表所示:

1

甲公司

得分

件數(shù)

10

10

40

40

50

天數(shù)

10

10

10

10

80

2

乙公司

得分

件數(shù)

10

5

40

45

50

天數(shù)

20

10

20

10

70

3

每件正品

每件次品

甲公司

2萬元

3萬元

乙公司

3萬元

3.5萬元

1)分別求甲、乙兩個(gè)公司這100天生產(chǎn)的產(chǎn)品的正品率(用百分?jǐn)?shù)表示);

2)試問甲乙兩個(gè)公司這100天生產(chǎn)的產(chǎn)品的總利潤(rùn)哪個(gè)更大?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,的中點(diǎn),將沿直線翻折成,連結(jié),的中點(diǎn),則在翻折過程中,下列說法中所有正確的序號(hào)是_______.

①存在某個(gè)位置,使得;

②翻折過程中,的長(zhǎng)是定值;

③若,則

④若,當(dāng)三棱錐的體積最大時(shí),三棱錐的外接球的表面積是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】紋樣是中國(guó)傳統(tǒng)文化的重要組成部分,它既代表著中華民族的悠久歷史、社會(huì)的發(fā)展進(jìn)步,也是世界文化藝術(shù)寶庫(kù)中的巨大財(cái)富.小楠從小就對(duì)紋樣藝術(shù)有濃厚的興趣.收集了如下9枚紋樣微章,其中4枚鳳紋徽章,5枚龍紋微章.小楠從9枚徽章中任取3枚,則其中至少有一枚鳳紋徽章的概率為( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】日,某地援鄂醫(yī)護(hù)人員,,,,人(其中是隊(duì)長(zhǎng))圓滿完成抗擊新冠肺炎疫情任務(wù)返回本地,他們受到當(dāng)?shù)厝罕娕c領(lǐng)導(dǎo)的熱烈歡迎.當(dāng)?shù)孛襟w為了宣傳他們的優(yōu)秀事跡,讓這名醫(yī)護(hù)人員和接見他們的一位領(lǐng)導(dǎo)共人站一排進(jìn)行拍照,則領(lǐng)導(dǎo)和隊(duì)長(zhǎng)站在兩端且相鄰,而不相鄰的排法種數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x,y,zR,zx+2y)=m

1)若m1,求的最小值;

2)若x2+2y2+3z2m28,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級(jí)政府相繼啟動(dòng)重大突發(fā)公共衛(wèi)生事件一級(jí)響應(yīng),全國(guó)人心抗擊疫情.下圖表示日至日我國(guó)新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯(cuò)誤的是(

A.月下旬新增確診人數(shù)呈波動(dòng)下降趨勢(shì)

B.隨著全國(guó)醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)

C.日至日新增確診人數(shù)波動(dòng)最大

D.我國(guó)新型冠狀病毒肺炎累計(jì)確診人數(shù)在日左右達(dá)到峰值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過拋物線的焦點(diǎn),上的點(diǎn)的兩個(gè)焦點(diǎn)所構(gòu)成的三角形的周長(zhǎng)為

1)求的方程;

2)若點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,過點(diǎn)作直線于另一點(diǎn),交軸于點(diǎn),且.判斷是否為定值,若是求出該值;若不是請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案