如圖,四棱錐中,底面是平行四邊形,,平面,,,是的中點(diǎn).
(1)求證:平面;
(2)求平面與平面所成銳二面角的余弦值.
(1)見(jiàn)解析;(2).
解析試題分析:(1)利用直線與平面垂直的性質(zhì)定理以及判定定理即可證明., ,所以平面 ;
(2)利用空間向量求解,平面與平面所成銳二面角的余弦值即為兩平面的法向量所成角或補(bǔ)角的余弦值.以點(diǎn)為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,可求平面的一個(gè)法向量;平面的一個(gè)法向量,所以則.
(1)平面,平面,
由已知條件得:,,所以平面 (5分)
由(1)結(jié)合已知條件以點(diǎn)為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,則:
,,,,,所以
7分
設(shè)是平面的一個(gè)法向量,則,
即:,取,則得:
同理可求:平面的一個(gè)法向量 10分
設(shè):平面和平面成角為,
則 12分
考點(diǎn):直線與平面垂直的性質(zhì)定理以及判定定理、空間向量法求二面角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知的直徑AB=3,點(diǎn)C為上異于A,B的一點(diǎn),平面ABC,且VC=2,點(diǎn)M為線段VB的中點(diǎn).
(1)求證:平面VAC;
(2)若AC=1,求二面角M-VA-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,AB是底面半徑為1的圓柱的一條母線,O為下底面中心,BC是下底面的一條切線。
(1)求證:OB⊥AC;
(2)若AC與圓柱下底面所成的角為30°,OA=2。求三棱錐A-BOC的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知四邊形ABCD 是矩形,PA⊥平面ABCD,M, N分別是AB, PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)求證:MN⊥DC;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱中-A BC中,AB AC,AB=AC=2,=4,點(diǎn)D是BC的中點(diǎn).
(1)求異面直線與所成角的余弦值;
(2)求平面與所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知正四棱柱中,.
(1)求證:;
(2)求二面角的余弦值;
(3)在線段上是否存在點(diǎn),使得平面平面,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱中,側(cè)棱垂直于底面,,,、分別為、的中點(diǎn).
(1)求證:平面平面;
(2)求證:平面;
(3)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com