如圖,在四棱錐中,底面是矩形.已知,,,
(1)證明平面;
(2)求異面直線與所成的角的正切值;
(3)求二面角的正切值.
(1)見解析;(2);(3).
【解析】本試題主要考查了立體幾何中的線面的垂直問題的運(yùn)用,以及異面直線所成的角的求解,和二面角的求解的綜合運(yùn)用。
(1)證明:在中,由題設(shè),,,可得,于是.在矩形中,,又,所以平面.
(2)解:由題設(shè),,所以(或其補(bǔ)角)是異面直線與所成的角.
在中,由余弦定理得
.
由(Ⅰ)知平面,平面,
所以,因而,于是是直角三角形,
故.
所以異面直線與所成的角的正切值為.
(3)解:過點(diǎn)作于,過點(diǎn)作于,連結(jié).
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061916591609457810/SYS201206191701180476182055_DA.files/image012.png">平面,平面,所以.又,因而平面,故為在平面內(nèi)的射影.由三垂線定理可知,.從而是二面角的平面角.
由題設(shè)可得,,,
,,.
于是在中,.
所以二面角的正切值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年廣西省桂林中學(xué)高二下學(xué)期期中考試數(shù)學(xué) 題型:解答題
((本小題滿分12分)
如圖,在四棱錐中,底面是矩形.已知
.
(1)證明平面;
(2)求異面直線與所成的角的大;
(3)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆福建省三明市高三第一學(xué)期測(cè)試?yán)砜茢?shù)學(xué)試卷 題型:解答題
如圖,在四棱錐中,底面是菱形,,,,平面,是的中點(diǎn),是的中點(diǎn).
(Ⅰ) 求證:∥平面;
(Ⅱ)求證:平面⊥平面;
(Ⅲ)求平面與平面所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆上海市高二年級(jí)期終考試數(shù)學(xué) 題型:解答題
(本題滿分16分)
如圖,在四棱錐中,底面是矩形.已知.
(1)證明平面;
(2)求異面直線與所成的角的大。
(3)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省高二下學(xué)期期末考試附加卷數(shù)學(xué)卷 題型:解答題
如圖,在四棱錐中,底面是正方形,側(cè)棱,為中點(diǎn),作交于
(1)求PF:FB的值
(2)求平面與平面所成的銳二面角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆浙江省高三6月考前沖刺卷數(shù)學(xué)理 題型:解答題
(本小題滿分14分)
如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.
(Ⅰ)當(dāng)時(shí),求證平面
(Ⅱ)當(dāng)二面角的大小為時(shí),求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com