已知數(shù)列的各項均為正數(shù),Sn為其前n項和,對于任意,滿足關(guān)系.
(Ⅰ)證明:是等比數(shù)列;
(Ⅱ)在正數(shù)數(shù)列中,設(shè),求數(shù)列中的最大項.

(1)根據(jù)數(shù)列的定義,只要證明從第二項起,每一項與前面一項的比值為定值即可。(2)

解析試題分析:(Ⅰ)證明:∵ ①
 ② 
②-①,得
故數(shù)列是等比數(shù)列
(1)由Sn=2an-2(n∈N*),知Sn-1=2an-1-2(n≥2,n∈N*),所以an=2an-2an-1.(n≥2,n∈N*),由此可知an=2n.(n∈N*).
(2)令,∵在區(qū)間(0,e)上,f'(x)>0,在區(qū)間(e,+∞)上,f'(x)<0.在區(qū)間(e,+∞)上f(x)為單調(diào)遞減函數(shù).(12分)
∴n≥2且n∈N*時,|lncn|是遞減數(shù)列.又lnc1<lnc2,∴數(shù)列|lncn|中的最大項為lnc2=
考點:等比數(shù)列的概念和數(shù)列的單調(diào)性
點評:該試題屬于常規(guī)試題,主要是根據(jù)已知的關(guān)系式,變形為關(guān)于通項公式之間的遞推關(guān)系,加以證明,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等比數(shù)列的前項和為,已知,求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列中,,公比
(I)的前n項和,證明:
(II)設(shè),求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在等比數(shù)列中,,且的等差中項.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列中,已知,且公比為正整數(shù).
(1) 求數(shù)列的通項公式;(5分)
(2) 求數(shù)列的前項和.(5分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{}是等差數(shù)列,且滿足:a1+a2+a3=6,a5=5;
數(shù)列{}滿足:(n≥2,n∈N﹡),b1=1.
(Ⅰ)求
(Ⅱ)記數(shù)列(n∈N﹡),若{}的前n項和為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是公差不為零的等差數(shù)列, 成等比數(shù)列.
求數(shù)列的通項;       求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題10分) 等比數(shù)列{}的前n 項和為,已知,,成等差數(shù)列
(1)求{}的公比q;
(2)求=3,求;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
設(shè) 數(shù)列滿足: 
求數(shù)列的通項公式. 

查看答案和解析>>

同步練習(xí)冊答案