(本小題12分)在直三棱柱(側(cè)棱垂直底面)中,,

(Ⅰ)若異面直線所成的角為,求棱柱的高;
(Ⅱ)設的中點,與平面所成的角為,當棱柱的高變化時,求的最大值.

(1)1(2)

解析試題分析:解:建立如圖2所示的空間直角坐標系,設,則有

,,,
,,.                       ……… 2分
(Ⅰ)因為異面直線所成的角,所以,
,得,解得.              ………… 6分
(Ⅱ)由的中點,得,于是.
設平面的法向量為,于是由,,可得
 即 可取, ………… 8分
于是.而. 

,………………………………10分
因為,當且僅當,即時,等號成立.
所以,
故當時,的最大值.               ………………1 2分
考點:本試題考查了棱柱中距離和角的求解。
點評:對于幾何體中的高的求解,可以借助于勾股定理來得到,同時對于線面角的求解,一般分為三步驟:先作,二證,三解。這也是所有求角的一般步驟,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖1,在Rt中,.D、E分別是上的點,且,將沿折起到的位置,使,如圖2.

(Ⅰ)求證:平面平面;
(Ⅱ)若,求與平面所成角的余弦值;
(Ⅲ)當點在何處時,的長度最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
在如圖所示的四棱錐中,已知 PA⊥平面ABCD, , ,,
的中點.

(1)求證:MC∥平面PAD
(2)求直線MC與平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,菱形ABCD與矩形BDEF所在平面互相垂直,

(1)求證:FC∥平面AED;
(2)若,當二面角為直二面角時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖:四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=,E、F分別為線段PD和BC的中點.

(Ⅰ) 求證:CE∥平面PAF;
(Ⅱ) 在線段BC上是否存在一點G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
在四棱錐中,,平面,的中點,

(Ⅰ)求四棱錐的體積;
(Ⅱ)若的中點,求證:平面平面;
(Ⅲ)求二面角的大小。.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖, 是邊長為的正方形,平面,,,與平面所成角為.

(Ⅰ)求證:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點,使得平面?若存在,試確定點的位置;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直三棱柱中,,分別是棱上的點(點 不同于點),且的中點.

求證:(1)平面平面;
(2)直線平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分)如圖,在四棱錐中,底面是正方形,側(cè)棱底面,,的中點,作于點

(1)證明:平面.
(2)證明:平面.
(3)求二面角的大小.

查看答案和解析>>

同步練習冊答案