已知拋物線y2=4x的焦點(diǎn)F是等腰直角△ABF的直角頂點(diǎn),A,B在拋物線上,
(1)求證:A,B關(guān)于x軸對(duì)稱;
(2)求△ABF的面積.
分析:(1)根據(jù)拋物線y2=4x的焦點(diǎn)F是等腰直角△ABF的直角頂點(diǎn),可得|AF|=|BF|,由此可得結(jié)論;
(2)求出A的坐標(biāo),即可求得三角形的面積.
解答:(1)證明:∵拋物線y2=4x的焦點(diǎn)F是等腰直角△ABF的直角頂點(diǎn),
∴|AF|=|BF|
∴A、B到準(zhǔn)線的距離相等
∴A、B兩點(diǎn)的橫坐標(biāo)相等
∴A、B兩點(diǎn)的縱坐標(biāo)相反
∴A、B關(guān)于x軸對(duì)稱;
(2)解:由題意,設(shè)A(x,y),則|y|=|x-1|
∵y2=4x,∴|x-1|2=4x
∴x2-6x+1=0
x=3±2
2

x=3+2
2
時(shí),|y|=2+2
2
,∴△ABF的面積為(2+2
2
2=12+8
2
;
x=3-2
2
時(shí),|y|=2
2
-2,∴△ABF的面積為(2
2
-2)2=12-8
2
點(diǎn)評(píng):本題考查直線與拋物線的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F,其準(zhǔn)線與x軸交于點(diǎn)M,過M作斜率為k的直線與拋物線交于A、B兩點(diǎn),弦AB的中點(diǎn)為P,AB的垂直平分線與x軸交于點(diǎn)E(x0,0).
(1)求k的取值范圍;
(2)求證:x0>3;
(3)△PEF能否成為以EF為底的等腰三角形?若能,求此k的值;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線
y
2
 
=4x
的焦點(diǎn)為F,過點(diǎn)A(4,4)作直線l:x=-1垂線,垂足為M,則∠MAF的平分線所在直線的方程為
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,焦點(diǎn)為F,頂點(diǎn)為O,點(diǎn)P(m,n)在拋物線上移動(dòng),Q是OP的中點(diǎn),M是FQ的中點(diǎn).
(1)求點(diǎn)M的軌跡方程.
(2)求
nm+3
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x與直線2x+y-4=0相交于A、B兩點(diǎn),拋物線的焦點(diǎn)為F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,其焦點(diǎn)為F,P是拋物線上一點(diǎn),定點(diǎn)A(6,3),則|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步練習(xí)冊(cè)答案