分析 (1)根據(jù)正弦函數(shù)的性質(zhì)直接求解f(x)的單調(diào)減區(qū)間;
(2)根據(jù)f($\frac{α}{3}$)=cos2α,利用和與差公式即可求解sinα-cosα的值.
解答 解:(1)函數(shù)f(x)=sin(3x+$\frac{π}{4}$),
令$\frac{π}{2}+2kπ≤3x+\frac{π}{4}≤\frac{3π}{2}+2kπ$,k∈Z,
得:$\frac{2}{3}kπ-\frac{π}{12}$≤x≤$\frac{5π}{12}+\frac{2}{3}kπ$,
∴f(x)的單調(diào)減區(qū)間為[$\frac{2}{3}kπ-\frac{π}{12}$,$\frac{5π}{12}+\frac{2}{3}kπ$],k∈Z,
(2)由f($\frac{α}{3}$)=cos2α,即sin(α+$\frac{π}{4}$)=cos2α.
則$\frac{\sqrt{2}}{2}$(sinα+cosα)=cos2α-sin2α
得:$\frac{\sqrt{2}}{2}$(sinα+cosα)=(cosα+sinα)(cosα-sinα)
∵α是銳角,
∴cosα+sinα≠0.
∴cosα-sinα=$\frac{\sqrt{2}}{2}$,
故得sinα-cosα=$-\frac{\sqrt{2}}{2}$.
點(diǎn)評 本題考查了三角函數(shù)的性質(zhì)的運(yùn)用和和與差公式的計(jì)算.屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$i | D. | $\frac{1}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$-8π | B. | -$\frac{7}{4}$π-8π | C. | -$\frac{π}{4}$-10π | D. | -10π+$\frac{7π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1或$\sqrt{3}$ | B. | 1或3 | C. | -2或6 | D. | 0或4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com