已知實數(shù)x,y滿足
|x|
5
+
|y|
3
≤1
,則z=2x+y的最小值是( 。
A、10B、3C、-3D、-10
分析:先根據(jù)約束條件畫出可行域,設z=2x+y,再利用z的幾何意義求最值,只需求出直線z=2x+y過可行域內(nèi)的點A時,從而得到z=2x+y的最小值即可.
解答:精英家教網(wǎng):先根據(jù)約束條件畫出可行域,
設z=2x+y,
將z的值轉(zhuǎn)化為直線z=2x+y在y軸上的截距,
當直線z=2x+y經(jīng)過點A(-5,0)時,z最小,
最小值為:-10.
故選D.
點評:本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標函數(shù)有唯一最優(yōu)解是我們最常見的問題,這類問題一般要分三步:畫出可行域、求出關鍵點、定出最優(yōu)解.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
x-y+2≥0
x+y≥0
x≤1
,則z=2x+y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x、y滿足
x≥1
y≥2
x+y≤4
,則u=
x+y
x
的取值范圍是
[2,4]
[2,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
x+y≤2
x-y≤2
0≤x≤1
,則z=2x-3y的最大值是
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
y2-x≤0
x+y≤2
,則2x+y的最小值為
-
1
8
-
1
8
,最大值為
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)已知實數(shù)x,y滿足|2x+y+1|≤|x+2y+2|,且|y|≤1,則z=2x+y的最大值為( 。

查看答案和解析>>

同步練習冊答案