(本小題滿分13分)已知圓與直線相交于兩點.
(1)求弦的長;
(2)若圓經(jīng)過,且圓與圓的公共弦平行于直線,求圓的方程.
(1)(2)
【解析】
試題分析:(1)根據(jù)點到直線的距離公式可得圓心到直線的距離,
因為圓心到直線的距離、半徑和半弦長構(gòu)成直角三角形,
所以. ……5分
(2)設(shè)圓的方程為,
則公共弦所在的直線方程為:,
所以即.
又因為圓經(jīng)過,所以
所以圓的方程為. ……13分
考點:本小題主要考查直線與圓、圓與圓的位置關(guān)系的判斷和應(yīng)用、弦長公式、兩圓的公共弦和圓的方程的求解,考查學生數(shù)形結(jié)合思想的應(yīng)用和運算求解能力.
點評:圓心到直線的距離、半徑和半弦長構(gòu)成直角三角形,所以經(jīng)常應(yīng)用勾股定義求其中的量,另外,兩個圓相減,就可以得到兩個圓的公共弦所在的直線方程.
科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調(diào)理科數(shù)學 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項.
(1) 求函數(shù)的表達式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com