[例] 已知函數(shù),若恒成立,求的值域


解析:

應(yīng)先由已知條件確定取值范圍,然后再將中的絕對(duì)值化去之后求值域.依題意,恒成立,則,解得

所以,從而,所以的值域是

求函數(shù)的值域也是高考熱點(diǎn),往往都要依據(jù)函數(shù)的單調(diào)性求函數(shù)的最值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)(x∈R)滿足:對(duì)于任意實(shí)數(shù)x,y,都有f(x+y)=f(x)+f(y)+
1
2
恒成立,且當(dāng)x>0時(shí),f(x)>-
1
2
恒成立;
(1)求f(0)的值,并例舉滿足題設(shè)條件的一個(gè)特殊的具體函數(shù);
(2)判定函數(shù)f(x)在R上的單調(diào)性,并加以證明;
(3)若函數(shù)F(x)=f(max{-x,2x-x2})+f(-k)+1(其中max{a,b}=
a,(a≥b)
b,(a<b)
)有三個(gè)零點(diǎn)x1,x2,x3,求u=(x1+x2+x3)+x1•x2•x3的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 ( 2005全國卷III)已知函數(shù),(Ⅰ)求的單調(diào)區(qū)間和值域;

(Ⅱ)設(shè),函數(shù),若對(duì)于任意,總存在使得成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高一上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)滿足:對(duì)于任意實(shí)數(shù),都有恒成立,且當(dāng)時(shí),恒成立;

(1)求的值,并例舉滿足題設(shè)條件的一個(gè)特殊的具體函數(shù);

(2)判定函數(shù)在R上的單調(diào)性,并加以證明;

(3)若函數(shù)(其中)有三個(gè)零點(diǎn),求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)(x∈R)滿足:對(duì)于任意實(shí)數(shù)x,y,都有數(shù)學(xué)公式恒成立,且當(dāng)x>0時(shí),數(shù)學(xué)公式恒成立;
(1)求f(0)的值,并例舉滿足題設(shè)條件的一個(gè)特殊的具體函數(shù);
(2)判定函數(shù)f(x)在R上的單調(diào)性,并加以證明;
(3)若函數(shù)F(x)=f(max{-x,2x-x2})+f(-k)+1(其中數(shù)學(xué)公式)有三個(gè)零點(diǎn)x1,x2,x3,求u=(x1+x2+x3)+x1•x2•x3的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案