(2013•東城區(qū)一模)從1,3,5,7這四個(gè)數(shù)中隨機(jī)地取兩個(gè)數(shù)組成一個(gè)兩位數(shù),則組成的兩位數(shù)是5的倍數(shù)的概率為
1
4
1
4
分析:根據(jù)所抽取的數(shù)據(jù)拼成兩位數(shù),得出總數(shù)及是5的倍數(shù)的數(shù),求概率.
解答:解:如下表,任意抽取兩個(gè)不同數(shù)字組成一個(gè)兩位數(shù),共12種情況,其中是5的倍數(shù)的有15,35,75三種,
∴組成兩位數(shù)能被3整除的概率為
3
12
=
1
4

  1 3 5 7
1   13 15 17
3 31   35 37
5 51 53   57
7 71 73 75  
故答案為:
1
4
點(diǎn)評(píng):本題考查了求概率的方法:列表法和樹狀圖法.關(guān)鍵是通過畫表格(圖)求出組成兩位數(shù)的所有可能情況及符合條件的幾種可能情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)設(shè)A是由n個(gè)有序?qū)崝?shù)構(gòu)成的一個(gè)數(shù)組,記作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)稱為數(shù)組A的“元”,S稱為A的下標(biāo).如果數(shù)組S中的每個(gè)“元”都是來自 數(shù)組A中不同下標(biāo)的“元”,則稱A=(a1,a2,…,an)為B=(b1,b2,…bn)的子數(shù)組.定義兩個(gè)數(shù)組A=(a1,a2,…,an),B=(b1,b2,…,bn)的關(guān)系數(shù)為C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
,
1
2
)
,B=(-1,1,2,3),設(shè)S是B的含有兩個(gè)“元”的子數(shù)組,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
,
3
3
,
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S為B的含有三個(gè)“元”的子數(shù)組,求C(A,S)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)某游戲規(guī)則如下:隨機(jī)地往半徑為1的圓內(nèi)投擲飛標(biāo),若飛標(biāo)到圓心的距離大于
1
2
,則成績?yōu)榧案瘢蝗麸w標(biāo)到圓心的距離小于
1
4
,則成績?yōu)閮?yōu)秀;若飛標(biāo)到圓心的距離大于
1
4
且小于
1
2
,則成績?yōu)榱己茫敲丛谒型稊S到圓內(nèi)的飛標(biāo)中得到成績?yōu)榱己玫母怕蕿椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)函數(shù)f(x)=sin(x-
π
3
)
的圖象為C,有如下結(jié)論:
①圖象C關(guān)于直線x=
6
對(duì)稱;
②圖象C關(guān)于點(diǎn)(
3
,0)
對(duì)稱;
③函數(shù)f(x)在區(qū)間[
π
3
,
6
]
內(nèi)是增函數(shù),
其中正確的結(jié)論序號(hào)是
①②③
①②③
.(寫出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)已知全集U={1,2,3,4},集合A={1,2},那么集合?UA為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)數(shù)列{an}的各項(xiàng)排成如圖所示的三角形形狀,其中每一行比上一行增加兩項(xiàng),若an=an(a≠0),則位于第10行的第8列的項(xiàng)等于
a89
a89
,a2013在圖中位于
第45行的第77列
第45行的第77列
.(填第幾行的第幾列)

查看答案和解析>>

同步練習(xí)冊(cè)答案