分析 (1)先求函數(shù)的定義域,然后對函數(shù)求導可得f′(x)=lnx+1,分別令f′(x)>0,f′(x)<0,可求函數(shù)的單調增區(qū)間,單調減區(qū)間,極值;
(2)由不等式$\frac{x-m}{g(x)}>\sqrt{x}$⇒m<(x-$\sqrt{x}{e}^{x}$)max,(x≥0)
$令h(x)=x-\sqrt{x}{e}^{x}$,(x>0),h′(x)=1-($\frac{1}{2\sqrt{x}}+\sqrt{x}$)ex.利用導數(shù)求出單調性,即求出最大值即可.
(3)由(1)得函數(shù)f(x)的單調增區(qū)間為($\frac{1}{e}$,+∞)
f(x1+x2)=(x1+x2)ln(x1+x2)>f(x1)=x1lnx1⇒lnx1<$\frac{{x}_{1}+{x}_{2}}{{x}_{1}}$ln(x1+x2)
同理得lnx2<$\frac{{x}_{1}+{x}_{2}}{{x}_{2}}$ln(x1+x2)
lnx1+lnx2=(2+$\frac{{x}_{1}}{{x}_{2}}+\frac{{x}_{2}}{{x}_{1}}$)ln(x1+x2)<4ln(x1+x2),即ln(x1•x2)$<ln({x}_{1}+{x}_{2})^{4}$
可證得x1x2<(x1+x2)4.
解答 解:(1)函數(shù)的定義域為:(0,+∞)
對函數(shù)求導可得f′(x)=lnx+1
令f′(x)>0可得x$>\frac{1}{e}$
f′(x)<0可得0$<x<\frac{1}{e}$
則函數(shù)f(x)的單調增區(qū)間為($\frac{1}{e}$,+∞),單調減區(qū)間為(0,$\frac{1}{e}$)
∴可知函數(shù)f(x)在x=$\frac{1}{e}$時,取得極小值f($\frac{1}{e}$)=-$\frac{1}{e}$,無極大值.
(2)由不等式$\frac{x-m}{g(x)}>\sqrt{x}$⇒m<x-$\sqrt{x}{e}^{x}$,(x≥0)
$令h(x)=x-\sqrt{x}{e}^{x}$,(x>0),h′(x)=1-($\frac{1}{2\sqrt{x}}+\sqrt{x}$)ex.
∵x>0,∴$\frac{1}{2\sqrt{x}}+\sqrt{x}≥\sqrt{2}$且ex>1,∴$(\frac{1}{2\sqrt{x}}+\sqrt{x}){e}^{x}>1$
∴h′(x)<0,即函數(shù)h(x)在[,0+∞)單調遞減,
∴h(x)≤h(0)=0,
∴若存在x使不等式$\frac{x-m}{g(x)}>\sqrt{x}$成立,實數(shù)m的取值范圍為(-∞,0);
(3)證明:由(1)得函數(shù)f(x)的單調增區(qū)間為($\frac{1}{e}$,+∞)
∵x1,x2∈($\frac{1}{e}$,1),x1+x2<1,∴$\frac{1}{e}<{x}_{1}<{x}_{1}+{x}_{2}<1$
∵f(x1+x2)=(x1+x2)ln(x1+x2)>f(x1)=x1lnx1
⇒lnx1<$\frac{{x}_{1}+{x}_{2}}{{x}_{1}}$ln(x1+x2)
同理得lnx2<$\frac{{x}_{1}+{x}_{2}}{{x}_{2}}$ln(x1+x2)
∴l(xiāng)nx1+lnx2$<(\frac{{x}_{1}+{x}_{2}}{{x}_{1}}+\frac{{x}_{1}+{x}_{2}}{{x}_{2}})$ln(x1+x2)=(2+$\frac{{x}_{1}}{{x}_{2}}+\frac{{x}_{2}}{{x}_{1}}$)ln(x1+x2).
∵2+$\frac{{x}_{1}}{{x}_{2}}+\frac{{x}_{2}}{{x}_{1}}$≥4,(x1=x2時取等號),ln(x1+x2)<0
∴l(xiāng)nx1+lnx2=(2+$\frac{{x}_{1}}{{x}_{2}}+\frac{{x}_{2}}{{x}_{1}}$)ln(x1+x2)<4ln(x1+x2).
∴l(xiāng)n(x1•x2)$<ln({x}_{1}+{x}_{2})^{4}$
∴x1x2<(x1+x2)4.
點評 本題考查了導數(shù)的綜合應用,利用導數(shù)求函數(shù)單調性、最值,考查了存在性問題、轉化思想,屬于難題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{13}{16}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,+∞) | B. | [-$\frac{1}{2}$,+∞) | C. | [$\frac{13}{4}$,+∞) | D. | ($\frac{13}{4}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com