數(shù)列{an}中sn=n2,則a8=
 
考點(diǎn):數(shù)列遞推式
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:在數(shù)列{an}中,有當(dāng)n≥2時(shí),an=sn-sn-1,利用此關(guān)系式求解.
解答: 解:當(dāng)n≥2時(shí),an=sn-sn-1,
所以a8=s8-s7=82-72=15,
故答案為:15.
點(diǎn)評(píng):本題考查數(shù)列中項(xiàng)的求值計(jì)算,本題利用了當(dāng)n≥2時(shí),an=sn-sn-1求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)點(diǎn)P到兩點(diǎn)(
3
,0),(-
3
,0)的距離和為4;動(dòng)點(diǎn)Q在動(dòng)圓C1:x2+y2=r2(1<r<4)上.
(1)求動(dòng)點(diǎn)P的軌跡C2的方程;
(2)若直線PQ與C1和C2均只有一個(gè)交點(diǎn),求線段PQ長(zhǎng)度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x
x+2
在區(qū)間[2,4]上的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式f(x)≥0的解集為[2,4],不等式g(x)≥0的解集為∅,則
f(x)
g(x)
>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)镽的函數(shù)f(x)=
1
|x-1|
,x≠1
1,x=1
,若關(guān)于x的函數(shù)h(x)=f2(x)+bf(x)+
1
4
有5個(gè)不同的零點(diǎn)x1,x2,x3,x4,x5,則x12+x22+x32+x42+x52=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)g(x)是定義在R上,以1為周期的函數(shù),若函數(shù)f(x)=x+g(x)在區(qū)間[2,3]上的值域?yàn)閇-2,5],則f(x)在區(qū)間[-2,6]上的值域?yàn)?div id="xjwxixj" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={x|-1≤x<2},N={x|x-k≤0},若M∩N=M,則k的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)G是△ABC的重心(即三角形各邊中線的交點(diǎn)),過(guò)點(diǎn)G作直線與AB、AC兩邊分別交于M、N兩點(diǎn),若
AM
=x
AB
,
AN
=y
AC
,則
1
x
+
1
y
=3,由平面圖形類比到空間圖形,設(shè)任一經(jīng)過(guò)三棱錐P-ABC的重心G(即各個(gè)面的重心與該面所對(duì)頂點(diǎn)連線的交點(diǎn))的平面分別與三條側(cè)棱交于A1、B1、C1,且
PA1
=x
PA
PB1
=y
PB
,
PC1
=z
PC
,則有
1
x
+
1
y
+
1
z
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)D,E分別是△ABC的邊AB,BC上的點(diǎn),AD=
1
2
AB,BE=
1
3
BC,
DE
1
AB
2
AC
(λ1,λ2為實(shí)數(shù)),則λ12的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案