3、若sinα>0,且tanα<0,則角α的終邊位于( 。
分析:由sinα>0,則角α的終邊位于一二象限,由tanα<0,則角α的終邊位于二三象限,兩者結(jié)合即可解決問題.
解答:解:∵sinα>0,則角α的終邊位于一二象限,
∵由tanα<0,
∴角α的終邊位于二三象限,
∴角α的終邊位于第二象限.
故選擇B.
點(diǎn)評:本題考查三角函數(shù)值的符號規(guī)律,屬于基礎(chǔ)題,合理地將條件化簡,從而將問題轉(zhuǎn)化為已知三角函數(shù)值的符號問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)選修4-4:坐標(biāo)系與參數(shù)方程
在曲線C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上求一點(diǎn),使它到直線
C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t參數(shù))

的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.
(2)選修4-5;不等式選講
若ab>0,且A(a,0),B(0,b),C(-2,-2)三點(diǎn)共線,求ab的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA
(2)若點(diǎn)A(2,2)在矩陣M=
.
cosα-sinα
sinαcosα
.
對應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣;
(3)在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動(dòng)點(diǎn),B為直線ρcosθ+ρsinθ-7=0上的動(dòng)點(diǎn),求AB的最小值;
(4)已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)一模)對于函數(shù)f1(x),f2(x),h(x),如果存在實(shí)數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)
;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設(shè)f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍.
(3)設(shè)f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數(shù)h(x)圖象的最低點(diǎn)坐標(biāo)為(2,8).若對于任意正實(shí)數(shù)x1,x2且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個(gè)m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第1章 常用邏輯用語》2013年單元測試卷(解析版) 題型:填空題

指出下列命題中哪些是全稱命題,哪些是特稱命題,并判斷真假:
(1)若a>0,且a≠1,則對任意實(shí)數(shù)x,ax>0.   
(2)對任意實(shí)數(shù)x1,x2,若x1<x2,則tan x1<tan x2   
(3)?T∈R,使|sin(x+T)|=|sin x|.   
(4)?x∈R,使+1<0.   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)選修4-4:坐標(biāo)系與參數(shù)方程
在曲線C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上求一點(diǎn),使它到直線
C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t參數(shù))

的距離最小,并求出該點(diǎn)坐標(biāo)和最小距離.
(2)選修4-5;不等式選講
若ab>0,且A(a,0),B(0,b),C(-2,-2)三點(diǎn)共線,求ab的最小值.

查看答案和解析>>

同步練習(xí)冊答案