9、函數(shù)f(x)=x+1,x∈(1,2]的值域?yàn)?div id="pcszxop" class="quizPutTag">(2,3]
分析:函數(shù)f(x)=x+1,在x∈(1,2]上是一個(gè)增函數(shù),由此求出最大值與最小值,寫出函數(shù)值域即可.
解答:解:∵函數(shù)f(x)=x+1,在x∈(1,2]上是一個(gè)增函數(shù)
∴2<y≤3
函數(shù)f(x)=x+1,x∈(1,2]的值域?yàn)椋?,3]
故答案為:(2,3].
點(diǎn)評(píng):本題考查函數(shù)的值域,解題的關(guān)鍵是由函數(shù)的解析式得出函數(shù)的單調(diào)性,先求最值,再寫出值域.
練習(xí)冊(cè)系列答案
  • 名校作業(yè)課時(shí)精練系列答案
  • 六月沖刺系列答案
  • 導(dǎo)學(xué)全程練創(chuàng)優(yōu)訓(xùn)練系列答案
  • 課時(shí)同步導(dǎo)練系列答案
  • 奪分王系列答案
  • 助學(xué)讀本系列答案
  • 指南針導(dǎo)學(xué)探究系列答案
  • 學(xué)習(xí)指要系列答案
  • 每課一練浙江少年兒童出版社系列答案
  • 雙成卷王系列答案
  • 年級(jí) 高中課程 年級(jí) 初中課程
    高一 高一免費(fèi)課程推薦! 初一 初一免費(fèi)課程推薦!
    高二 高二免費(fèi)課程推薦! 初二 初二免費(fèi)課程推薦!
    高三 高三免費(fèi)課程推薦! 初三 初三免費(fèi)課程推薦!
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
    (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
    2
    ,求a的值;
    (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
    (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
    2
    2
    ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2012•深圳一模)已知函數(shù)f(x)=
    1
    3
    x3+bx2+cx+d
    ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
    (1)求f(x);
    (2)設(shè)g(x)=x
    f′(x)
     , m>0
    ,求函數(shù)g(x)在[0,m]上的最大值;
    (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2011•上海模擬)已知函數(shù)f(x)=(
    x
    a
    -1)2+(
    b
    x
    -1)2,x∈(0,+∞)
    ,其中0<a<b.
    (1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
    (2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
    (3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
    求證:f1(x)+f2(x)>
    4c2
    k(k+c)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

    已知函數(shù)f(x)=
    1
    3
    x3+bx2+cx+d
    ,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
    (1)求f(x);
    (2)設(shè)g(x)=x
    f′(x)
     , m>0
    ,求函數(shù)g(x)在[0,m]上的最大值;
    (3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

    設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
    (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
    2
    ,求a的值;
    (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
    (3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
    2
    2
    ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案