如圖,過拋物線y2=4x焦點(diǎn)的直線依次交拋物線與圓(x-1)2+y2=1于A,B,C,D,則|AB|•|CD|=( )
A.4
B.2
C.1
D.
【答案】分析:當(dāng)直線過焦點(diǎn)F且垂直于x軸時(shí),|AD|=2p=4,|BC|=2r=2,由拋物線與圓的對(duì)稱性知:|AB|=|CD|=1,所以|AB|•|CD|=1.
解答:解:由特殊化原則,
當(dāng)直線過焦點(diǎn)F且垂直于x軸時(shí),
|AD|=2p=4,
|BC|=2r=2,
由拋物線與圓的對(duì)稱性知:
|AB|=|CD|=1,
所以|AB|•|CD|=1;
故選C.
點(diǎn)評(píng):本題以拋物線與圓為載體,考查圓的性質(zhì)和應(yīng)用,解題時(shí)恰當(dāng)?shù)剡x取取特殊值,能夠有效地簡化運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,過拋物線y2=2px(p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A、B,交其準(zhǔn)線于點(diǎn)C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

78、如圖,過拋物線y2=4x的焦點(diǎn)F的直線交拋物線與圓(x-1)2+y2=1于A,B,C,D四點(diǎn),則|AB|•|CD|=
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過拋物線y2=2px(p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A、B(|AF|>|BF|),交其準(zhǔn)線于點(diǎn)C,若|BC|=2|BF|,且|AF|=2,則此拋物線的方程為
y2=2x
y2=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過拋物線y2=2px(p>0)的焦點(diǎn)F且傾斜角為60°的直線l交拋物線于A、B兩點(diǎn),若|AF|=3,則此拋物線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過拋物線y2=4x焦點(diǎn)的直線依次交拋物線與圓(x-1)2+y2=1于A,B,C,D,則
AB
CD
=
1
1

查看答案和解析>>

同步練習(xí)冊(cè)答案