如果x2+y2=1,求3x-4y的最大值.
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:設(shè)3x-4y=b,利用直線和圓的位置關(guān)系即可得到結(jié)論.
解答: 解:設(shè)3x-4y=b,即3x-4y-b=0,
則圓心到直線的距離d=
|-b|
32+42
=
|b|
5
≤1
,
即|b|≤5,
解得-5≤b≤5,
故3x-4y的最大值5.
點(diǎn)評(píng):本題主要考查直線和圓的位置關(guān)系的應(yīng)用,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程3x2+6x-
1
x
=0的實(shí)數(shù)根個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=x|x|+3的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(ax2+2x+3)
(1)若f(1)=1,求f(x)的單調(diào)區(qū)間;
(2)若已知函數(shù)的值域?yàn)镽,求a的取值范圍;
(3)是否存在實(shí)數(shù)a,使f(x)的最小值為0?若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在河岸 ac一側(cè)測(cè)量河的寬度,測(cè)量以下四組數(shù)據(jù),較適宜的是( 。 
A、c,α,γ
B、c,b,α
C、c,a,β
D、b,α,γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log2x-
2
x
+a的一個(gè)零點(diǎn)在(1,4)內(nèi),則實(shí)數(shù)a的取值范圍為( 。
A、(-
3
2
,2)
B、(4,6)
C、(2,4)
D、(-3,-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)M(0,1),C(2,3),動(dòng)點(diǎn)P滿足|
PC
|=1,過(guò)點(diǎn)M且斜率為k的直線l與動(dòng)點(diǎn)P的軌跡相交于A、B兩點(diǎn).
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)求實(shí)數(shù)k的取值范圍;
(3)求證:
MA
MB
為定值;
(4)若O為坐標(biāo)原點(diǎn),且
OA
OB
=12,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓Г的方程為
x2
a2
+
y2
b2
=1(a>b>0)點(diǎn)A,B分別為Г上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),且OA⊥OB;其中OA,OB稱為橢圓的一條半徑.
(1)求證:
1
|OA|2
+
1
|OB|2
=
1
a2
+
1
b2
;|OA|2+|OB|2的最小值為
4a2b2
a2+b2

(2)過(guò)點(diǎn)O作OH⊥AB于H,求證:|OH|=
ab
a2+b2
;S△OAB的最小值是
a2b2
a2+b2
;
(3)將(1)(2)的結(jié)論推廣至雙曲線,結(jié)論是否依然成立,若成立,證明你的結(jié)論;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知函數(shù)y=log24x圖象上的兩點(diǎn)A,B和函數(shù)y=log2x上的點(diǎn) C,線段AC平行于y軸,三角形ABC為正三角形時(shí),點(diǎn)B的坐標(biāo)為(p,q),則實(shí)數(shù)p的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案