10.已知函數(shù)$y=\frac{2}{x}$,當(dāng)x由2變?yōu)?.5時(shí),函數(shù)的增量為( 。
A.1B.2C.$\frac{1}{3}$D.$\frac{3}{2}$

分析 直接由f(2)-f(1.5)得到函數(shù)的增量

解答 解:函數(shù)$y=\frac{2}{x}$,當(dāng)x由2變?yōu)?.5時(shí),函數(shù)的增量為f(1.5)-f(2)=$\frac{2}{1.5}$-$\frac{2}{2}$=$\frac{4}{3}$-1=$\frac{1}{3}$,
故選:C

點(diǎn)評(píng) 本題考查了變化的快慢與變化率,考查了函數(shù)的增量,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.命題“若a>b,則ac>bc”(a,b,c都是實(shí)數(shù))與它的逆命題、否命題和逆否命題中,真命題的個(gè)數(shù)是( 。
A.4B.3C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若集合A={x∈Z|-2<x<2},B={x|y=log2x2},則A∩B=( 。
A.{-1,1}B.{-1,0,1}C.{1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓$Ω:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,直線$\frac{{\sqrt{2}}}{2}x+y=1$經(jīng)過(guò)Ω的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓Ω的方程;
(2)設(shè)橢圓Ω的右焦點(diǎn)為F,過(guò)點(diǎn)G(2,0)作斜率不為0的直線交橢圓Ω于M,N兩點(diǎn).設(shè)直線FM和FN的斜率為k1,k2
①求證:k1+k2為定值;
②求△FMN的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.頂點(diǎn)在原點(diǎn),對(duì)稱軸是y軸,且頂點(diǎn)與焦點(diǎn)的距離等于6的拋物線標(biāo)準(zhǔn)方程是x2=±24y.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)集合A={x|x2-x-6>0},B={x|-3≤x≤1},則A∩B=( 。
A.(-2,1]B.(-3,-2]C.[-3,-2)D.(-∞,1]∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知z1=a+3i,z2=3-4i,若$\frac{z_1}{z_2}$為純虛數(shù),則實(shí)數(shù)a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在直三棱柱ABC-A1B1C1中,D為BC的中點(diǎn),AB=3,AC=AA1=4,BC=5.
(1)求證:AB⊥A1C;
(2)求證:A1B∥平面ADC1;
(3)求直三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知∠Q的終邊上有一點(diǎn)P(x,-1)(x≠0),且tan∠Q=-x,求sin∠Q+cos∠Q的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案