已知函數(shù)f(x)=
1
3
x3+ax+b
,(a,b∈R)在x=2處取得極小值-
4
3

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若
1
3
x3+ax+b≤m2+m+
10
3
對(duì)x∈[-4,3]恒成立,求實(shí)數(shù)m的取值范圍.
分析:(I)通過(guò)求函數(shù)的導(dǎo)數(shù),函數(shù)f(x)在x=2處取得極值,就是x=2時(shí)導(dǎo)數(shù)為0,求出a,利用極小值為-
4
3
,求出a,b,可得f(x)的解析式,從而可求函數(shù)f(x)的單調(diào)區(qū)間;
(II)要使
1
3
x3+ax+b≤m2+m+
10
3
對(duì)x∈[-4,3]恒成立,只要f(x)maxm2+m+
10
3
就可以了,
解答:解:(Ⅰ)f′(x)=x2+a,由f′(2)=0得a=-4
f(2)=-
4
3
得b=4
f(x)=
1
3
x3-4x+4
,令f′(x)=x2-4>0得x>2或x<-2
∴f(x)的增區(qū)間為(-∞,-2),(2,+∞);
(II)由f(-4)=-
4
3
,f(-2)=
28
3
,f(2)=-
4
3
,f(3)=1

28
3
m2+m+
10
3
f(x)的最大值為
28
3
,
要使
1
3
x3+ax+b≤m2+m+
10
3
對(duì)x∈[-4,3]恒成立,只要f(x)maxm2+m+
10
3
就可以了,
28
3
m2+m+
10
3
得m≥3或m≤-2
所以實(shí)數(shù)m的取值范圍是m≥3或m≤-2
點(diǎn)評(píng):本題考查待定系數(shù)法求函數(shù)解析式,函數(shù)恒成立問(wèn)題,利用導(dǎo)數(shù)研究函數(shù)的極值,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個(gè)函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時(shí)滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個(gè)極大值點(diǎn);
②?x∈(8,+∞),f(x)>0.
則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x≥1時(shí),不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案