【題目】如圖,在正方體ABCDA1B1C1D1中,M,N,P分別是C1D1BC,A1D1的中點,有下列四個結(jié)論:

APCM是異面直線;②AP,CMDD1相交于一點;③MNBD1;

MN∥平面BB1D1D

其中所有正確結(jié)論的編號是( 。

A.①④B.②④C.①④D.②③④

【答案】B

【解析】

利用異面直線的概念,以及線面平行的判定定理和性質(zhì)定理,逐項判定,即可求解.

因為MPACMPAC,所以APCM是相交直線,

又面A1ADD1C1CDD1DD1,所以AP,CMDD1相交于一點,則①不正確,②正確.

③令ACBDO,因為MN分別是C1D1,BC的中點,

所以OND1MCD,,則MNOD1為平行四邊形,

所以MNOD1,因為MN平面BD1D,OD1平面BD1D,

所以MN∥平面BD1D,③不正確,④正確.

綜上所述,可得②④正確,

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.每年交強險最終保險費計算方法是:交強險最終保險費,其中a為交強險基礎(chǔ)保險費,A為與道路交通事故相聯(lián)系的浮動比率,同時滿足多個浮動因素的,按照向上浮動或者向下浮動比率的高者計算.按照我國《機動車交通事故責任強制保險基礎(chǔ)費率表》的規(guī)定:普通6座以下私家車的交強險基礎(chǔ)保險費950元,交強險費率浮動因素及比率如下表:

交強險浮動因素和浮動費率比率表

類型

浮動因素

浮動比率

上一個年度未發(fā)生有責任道路交通事故

上兩個年度未發(fā)生有責任道路交通事故

上三個及以上年度未發(fā)生有責任道路交通事故

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

上一個年度發(fā)生兩次及以上有責任道路交通事故

上一個年度發(fā)生有責任道路交通死亡事故

某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了100輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計結(jié)果如下表:

類型

數(shù)量

25

10

10

25

20

10

以這100輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題.

1)記X為一輛該品牌車在第四年續(xù)保時的費用,求X的分布列與數(shù)學期望(數(shù)學期望值保留到個位數(shù)字);

2)某二手車銷售商專門銷售這一品牌的二手車,且將經(jīng)銷商購車后下一年的交強險最終保險費高于交強險基礎(chǔ)保險費的車輛記為事故車,假設(shè)購進一輛事故車虧損3000元,購進一輛非事故車盈利5000.

①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至少有一輛是事故車的概率;

②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】區(qū)塊鏈技術(shù)被認為是繼蒸汽機、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術(shù)區(qū)塊鏈作為構(gòu)造信任的機器,將可能徹底改變整個人類社會價值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關(guān)數(shù)據(jù),如表

年份

2015

2016

2017

2018

2019

編號

1

2

3

4

5

企業(yè)總數(shù)量y(單位:千個)

2.156

3.727

8.305

24.279

36.224

注:參考數(shù)據(jù)(其中zlny).

附:樣本(xiyi)(i1,2,,n)的最小二乘法估計公式為

1)根據(jù)表中數(shù)據(jù)判斷,ya+bxycedx(其中e2.71828…,為自然對數(shù)的底數(shù)),哪一個回歸方程類型適宜預(yù)測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結(jié)果即可,不必說明理由)

2)根據(jù)(1)的結(jié)果,求y關(guān)于x的回歸方程(結(jié)果精確到小數(shù)點后第三位);

3)為了促進公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進行一次信息化技術(shù)比賽,邀請甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場比賽有兩個公司參加,并決出勝負;②每場比賽獲勝的公司與未參加此場比賽的公司進行下一場的比賽;③在比賽中,若有一個公司首先獲勝兩場,則本次比賽結(jié)束,該公司就獲得此次信息化比賽的優(yōu)勝公司,已知在每場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,請通過計算說明,哪兩個公司進行首場比賽時,甲公司獲得優(yōu)勝公司的概率最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論在定義域內(nèi)的極值點的個數(shù);

2)若對,恒成立,求實數(shù)的取值范圍;

3)證明:若,不等式成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,MN,P分別是C1D1BC,A1D1的中點,有下列四個結(jié)論:

APCM是異面直線;②APCM,DD1相交于一點;③MNBD1

MN∥平面BB1D1D

其中所有正確結(jié)論的編號是( 。

A.①④B.②④C.①④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),

1)設(shè)是函數(shù)的導(dǎo)函數(shù),求的單調(diào)區(qū)間;

2)證明:當時,在區(qū)間上有極大值點,且

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且點在橢圓.

1)求橢圓的標準方程;

2)過點的直線與橢圓交于,兩點,在直線上存在點,使三角形為正三角形,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓上任意一點到其兩個焦點,的距離之和等于,且圓經(jīng)過橢圓的焦點.

1)求橢圓的方程;

2)如圖,若直線與圓O相切,且與橢圓相交于A,B兩點,直線平行且與橢圓相切于點MOM位于直線的兩側(cè)).記,的面積分別為,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市208年抽樣100戶居民的月均用電量(單位:千瓦時),以,,,,分組,得到如下頻率分布表:

分組

頻數(shù)

頻率

0.04

19

0.22

25

0.25

15

0.15

10

5

0.05

1)求表中的值,并估計2018年該市居民月均用電量的中位數(shù);

2)該城市最近十年的居民月均用電量逐年上升,以當年居民月均用電量的中位數(shù)(單位:千瓦時)作為統(tǒng)計數(shù)據(jù),下圖是部分數(shù)據(jù)的折線圖.

由折線圖看出,可用線性回歸模型擬合與年份的關(guān)系.

①為簡化運算,對以上數(shù)據(jù)進行預(yù)處理,令,,請你在答題卡上完成數(shù)據(jù)預(yù)處理表;

②建立關(guān)于的線性回歸方程,預(yù)測2020年該市居民月均用電量的中位數(shù).

附:回歸直線的斜率和截距的最小二乘估計公式分別為:,

查看答案和解析>>

同步練習冊答案