某市職教中心組織廚師技能大賽,大賽依次設(shè)基本功(初賽)、面點(diǎn)制作(復(fù)賽)、熱菜烹制(決賽)三個輪次的比賽,已知某選手通過初賽、復(fù)賽、決賽的概率分別是,,且各輪次通過與否相互獨(dú)立.
(1)設(shè)該選手參賽的輪次為ξ,求ξ的分布列.
(2)對于(1)中的ξ,設(shè)“函數(shù)f(x)=3sinπ(x∈R)是偶函數(shù)”為事件D,求事件D發(fā)生的概率.

(1) ξ的分布列為:

ξ
1
2
3
P



(2)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋擲紅、藍(lán)兩顆骰子,設(shè)事件A為“藍(lán)色骰子的點(diǎn)數(shù)為3或6”,事件B為“兩顆骰子的點(diǎn)數(shù)之和大于8”.
(1)求P(A),P(B),P(AB);
(2)當(dāng)已知藍(lán)色骰子的點(diǎn)數(shù)為3或6時,求兩顆骰子的點(diǎn)數(shù)之和大于8的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若盒中裝有同一型號的燈泡共10只,其中有8只合格品,2只次品
(1)某工人師傅有放回地連續(xù)從該盒中取燈泡3次,每次取一只燈泡,求2次取到次品的概率;
(2)某工人師傅用該盒中的燈泡去更換會議室的一只已壞燈泡,每次從中取一燈泡,若是正品則用它更換已壞燈泡,若是次品則將其報廢(不再放回原盒中),求成功更換會議室的已壞燈泡所用燈泡只數(shù)的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某飲料公司對一名員工進(jìn)行測試以便確定其考評級別.公司準(zhǔn)備了兩種不同的飲料共5杯,其顏色完全相同,并且其中3杯為A飲料,另外2杯為B飲料,公司要求此員工一一品嘗后,從5杯飲料中選出3杯A飲料.若該員工3杯都選對,則評為優(yōu)秀;若3杯選對2杯,則評為良好;否則評為合格.假設(shè)此人對A和B兩種飲料沒有鑒別能力.
(1)求此人被評為優(yōu)秀的概率;
(2)求此人被評為良好及以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個口袋裝有n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸2個球(每次摸獎后放回),2個球顏色不同則為中獎.
(1)試用n表示一次摸獎中獎的概率.
(2)若n=5,求3次摸獎的中獎次數(shù)ξ=1的概率及數(shù)學(xué)期望.
(3)記3次摸獎恰有1次中獎的概率為P,當(dāng)n取多少時,P最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中國男子籃球職業(yè)聯(lián)賽總決賽采用七場四勝制(即先勝四場者獲勝).進(jìn)入總決賽的甲乙兩隊中,若每一場比賽甲隊獲勝的概率為,乙隊獲勝的概率為,假設(shè)每場比賽的結(jié)果互相獨(dú)立.現(xiàn)已賽完兩場,乙隊以暫時領(lǐng)先.
(1)求甲隊獲得這次比賽勝利的概率;
(2)設(shè)比賽結(jié)束時兩隊比賽的場數(shù)為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某高校在202年自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組:第1組[75,80),第2組[80,85), 第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,
(ⅰ)已知學(xué)生甲和學(xué)生乙的成績均在第三組,求學(xué)生甲和學(xué)生乙同時進(jìn)入第二輪面試的概率;
(ⅱ)學(xué)校決定在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受考官D的面試,設(shè)第4組中有名學(xué)生被考官D面試,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

有編號為1,2,3的三個白球,編號為4,5,6的三個黑球,這六個球除編號和顏色外完全相同,現(xiàn)從中任意取出兩個球.
(1)求取得的兩個球顏色相同的概率;
(2)求取得的兩個球顏色不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個袋子裝有大小形狀完全相同的9個球,其中5個紅球編號分別為1,2,3,4,5,4個白球編號分別為1,2,3,4,從袋中任意取出3個球.
(1)求取出的3個球編號都不相同的概率;
(2)記X為取出的3個球中編號的最小值,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案