設(shè)M點(diǎn)是圓C:x2+(y-4)2=4上的動(dòng)點(diǎn),過(guò)點(diǎn)M作圓O:x2+y2=1的兩條切線,切點(diǎn)分別為A,B,切線MA,MB分別交x軸于D,E兩點(diǎn).是否存在點(diǎn)M,使得線段DE被圓C在點(diǎn)M處的切線平分?若存在,求出點(diǎn)M的縱坐標(biāo);若不存在,說(shuō)明理由.
【答案】分析:設(shè)存在點(diǎn)M(x,y)滿足條件,設(shè)過(guò)點(diǎn)M且與圓O相切的直線方程為:y-y=k(x-x)通過(guò)點(diǎn)到直線的距離公式,求出直線MA,MB的斜率分別為k1,k2的關(guān)系,通過(guò)圓C在點(diǎn)M處的切線方程,求出切線與x軸的交點(diǎn)坐標(biāo),D,E的坐標(biāo),然后利用斜率關(guān)系式求出點(diǎn)M的縱坐標(biāo).
解答:解:設(shè)存在點(diǎn)M(x,y)滿足條件
設(shè)過(guò)點(diǎn)M且與圓O相切的直線方程為:y-y=k(x-x
則由題意得,,化簡(jiǎn)得:
設(shè)直線MA,MB的斜率分別為k1,k2,則
圓C在點(diǎn)M處的切線方程為
令y=0,得切線與x軸的交點(diǎn)坐標(biāo)為
又得D,E的坐標(biāo)分別為
由題意知,
用韋達(dá)定理代入可得,,與聯(lián)立,

點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,點(diǎn)到直線的距離公式的應(yīng)用,圓的切線方程的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M點(diǎn)是圓C:x2+(y-4)2=4上的動(dòng)點(diǎn),過(guò)點(diǎn)M作圓O:x2+y2=1的兩條切線,切點(diǎn)分別為A,B,切線MA,MB分別交x軸于D,E兩點(diǎn).是否存在點(diǎn)M,使得線段DE被圓C在點(diǎn)M處的切線平分?若存在,求出點(diǎn)M的縱坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)M點(diǎn)是圓C:x2+(y-4)2=4上的動(dòng)點(diǎn),過(guò)點(diǎn)M作圓O:x2+y2=1的兩條切線,切點(diǎn)分別為A,B,切線MA,MB分別交x軸于D,E兩點(diǎn).是否存在點(diǎn)M,使得線段DE被圓C在點(diǎn)M處的切線平分?若存在,求出點(diǎn)M的縱坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江省期中題 題型:解答題

如圖,設(shè)M點(diǎn)是圓C:x2+(y-4)2=4上的動(dòng)點(diǎn),過(guò)點(diǎn)M作圓O:x2+y2=18的兩條切線,切點(diǎn)分別為A,B,切線MA,MB分別交x軸于D,E兩點(diǎn)。
(1)求四邊形MAOB面積的最小值;
(2)是否存在點(diǎn)M,使得線段DE被圓C在點(diǎn)M處的切線平分?若存在,求出點(diǎn)M的縱坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)M點(diǎn)是圓C:x2+(y-4)2=4上的動(dòng)點(diǎn),過(guò)點(diǎn)M作圓O:x2+y2=1的兩條切線,切點(diǎn)分別為A,B,切線MA,MB分別交x軸于D,E兩點(diǎn).是否存在點(diǎn)M,使得線段DE被圓C在點(diǎn)M處的切線平分?若存在,求出點(diǎn)M的縱坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案