甲、乙兩人各擲一次骰子(均勻的正方體,六個(gè)面上分別為l,2,3,4,5,6點(diǎn)),所得點(diǎn)數(shù)分別記為,則的概率為

A. B. C. D. 

C

解析試題分析:由于甲、乙兩人各擲一次骰子(均勻的正方體,六個(gè)面上分別為l,2,3,4,5,6點(diǎn)),那么得到點(diǎn)數(shù)為有36種,即(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(1,3)(2,2)……(6,6)那么滿(mǎn)足題意的情況有5+4+3+2+1=15,那么可知滿(mǎn)足題意的基本事件數(shù)有15,利用古典概型概率得到為15:35=5:12,故答案選C.
考點(diǎn):本試題考查了古典概型的運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是理解滿(mǎn)足題意的所有的基本事件數(shù),然后得到事件A的基本事件數(shù) ,結(jié)合古典概型概率公式得到。屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

拋擲甲、乙兩顆骰子,若事件A:“甲骰子的點(diǎn)數(shù)大于4”;事件B:“甲、乙兩骰子的點(diǎn)數(shù)之和等于7”,則的值等于 (   。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

從甲口袋摸出一個(gè)紅球的概率是,從乙口袋中摸出一個(gè)紅球的概率是,則是(   )

A.2個(gè)球不都是紅球的概率B.2個(gè)球都是紅球的概率
C.至少有一個(gè)紅球的概率D.2個(gè)球中恰好有1個(gè)紅球的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

對(duì)于給定的實(shí)數(shù),按下列方法操作一次產(chǎn)生一個(gè)新的實(shí)數(shù):由甲、乙同時(shí)各擲一顆質(zhì)地均勻的骰子(一種各面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn)的正方體玩具),記出現(xiàn)向上的點(diǎn)數(shù)分別為,如果是偶數(shù),則把乘以2后再減去2;如果是奇數(shù),則把除以2后再加上2,這樣就可得到一個(gè)新的實(shí)數(shù),對(duì)仍按上述方法進(jìn)行一次操作,又得到一個(gè)新的實(shí)數(shù).當(dāng)時(shí),甲獲勝,否則乙獲勝.若甲獲勝的概率為,則的值不可能是

A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

投擲兩顆骰子,其向上的點(diǎn)數(shù)分別為,則復(fù)數(shù)為純虛數(shù)的概率為(   )

A. B.     C. D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

從裝有2只紅球和2只黑球的口袋內(nèi)任取2個(gè)球,那么互斥而不對(duì)立的兩個(gè)事件是

A.至少有1只黑球與都是黑球B.至少有1只黑球與都是紅球
C.至少有1只黑球與至少有1只紅球D.恰有1只黑球與恰有2只黑球

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

拋擲一骰子,觀察出現(xiàn)的點(diǎn)數(shù),設(shè)事件A為“出現(xiàn)1點(diǎn)”,事件B為“出現(xiàn)2點(diǎn)”.已知P(A)=P(B)=,則“出現(xiàn)1點(diǎn)或2點(diǎn)”的概率為(     ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

從1,2,3,4四個(gè)數(shù)字中任取兩個(gè)數(shù)求和,則和恰為偶數(shù)的概率是(    )

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知一顆粒子等可能地落入如右圖所示的四邊形內(nèi)的任意位置,如果通過(guò)大量的實(shí)驗(yàn)發(fā)現(xiàn)粒子落入△內(nèi)的頻率穩(wěn)定在附近,那么點(diǎn)和點(diǎn)到時(shí)直線的距離之比約為(    )

A. B. C. D. 

查看答案和解析>>

同步練習(xí)冊(cè)答案