設(shè)函數(shù)f(x)=
x+sinxx
,g(x)=xcosx-sinx.
(1)求證:當(dāng)x∈(0,π]時,g(x)<0;
(2)存在x∈(0,π],使得f(x)<a成立,求a的取值范圍;
(3)若g(bx)≤bxcosbx-bsinx(b≥-1)對x∈(0,π]恒成立,求b的取值范圍.
分析:(1)轉(zhuǎn)化求函數(shù)g(x)在(0,π]上的最大值,利用函數(shù)的導(dǎo)數(shù)判斷單調(diào)性進而求解;
(2)依題意即轉(zhuǎn)化為求函數(shù)f(x)在(0,π]上的最小值,利用函數(shù)的導(dǎo)數(shù)判斷單調(diào)性進而求解;
(3)先表示出函數(shù)g(bx),將恒成立問題轉(zhuǎn)化為函數(shù)求最值問題,利用函數(shù)的導(dǎo)數(shù)判斷單調(diào)性進而求解,注意b的范圍的討論.
解答:解(1)因為當(dāng)x∈(0,π]時,g'(x)=cosx-xsinx-cosx=-xsinx≤0,
所以g(x)在(0,π]上單調(diào)遞減,(3分)
又g(0)=0,所以當(dāng)x∈(0,π]時,g(x)<0(4分)
(2)因為f(x)=
x+sinx
x
=1+
sinx
x
,
所以f′(x)=
xcosx-sinx
x2
,
由(1)知,當(dāng)x∈(0,π]時,xcosx-sinx<0,所以f'(x)<0(6分)
所以f(x)在(0,π]上單調(diào)遞減,則當(dāng)x∈(0,π]時,f(x)min=f(π)=1(8分)
由題意知,f(x)<a在(0,π]上有解,所以a>f(x)min,從而a>1(10分)
(3)由g(bx)≤bxcosbx-bsinx(b≥-1),得sinbx≥bsinx(b≥-1)對x∈(0,π]恒成立,
①當(dāng)b=-1,0,1時,不等式顯然成立(11分)
②當(dāng)b>1時,因為bx∈(0,bπ],所以取x0=
π
b
∈(0,π]
,
則有sinbx0=0<bsinx0,從而時不等式不恒成立(12分)
③當(dāng)0<b<1時,由(Ⅱ)可知h(x)=
sinx
x
在(0,π]上單調(diào)遞減,而0<bx<x≤π,
sinx
x
sinbx
bx
,
∴sinbx>bsinx成立(14分)
④當(dāng)-1<b<0時,當(dāng)x∈(0,π]時,0<-bx<x≤π,
sinx
x
sin(-bx)
-bx
=
sinbx
bx
,∴sinbx<bsinx不成立,
綜上所述,當(dāng)b=-1或0≤b≤1時,有g(shù)(bx)≤bxcosbx-bsinx(b≥-1)對x∈(0,π]恒成立.(16分)
點評:本題考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性求得到函數(shù)的最值,掌握不等式恒成立時所取的條件,“轉(zhuǎn)化”是這類題目解決的“靈魂”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是實數(shù),e為自然對數(shù)的底數(shù))
(1)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(1,0),求p的值;
(3)若在[1,e]上至少存在一點x0,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+1)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列三個命題:
①函數(shù)f(x)=(
12
)x
為R上的l高調(diào)函數(shù);
②函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍[2,+∞);
其中正確的命題是
②③
②③
(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標(biāo)由小到大構(gòu)成一個無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案