19.?dāng)?shù)列{an}是公差不為0的等差數(shù)列,且a1,a4,a5恰為某等比數(shù)列的前三項(xiàng),那么該等比數(shù)列公比的值 為$\frac{1}{3}$.

分析 設(shè)數(shù)列{an}是公差d不為0的等差數(shù)列,等比數(shù)列的公比為q,由等比數(shù)列的中項(xiàng)的性質(zhì)和等差數(shù)列的通項(xiàng)公式,化簡整理可得首項(xiàng)與公差的關(guān)系,再由等比數(shù)列的定義,計(jì)算即可得到所求值.

解答 解:設(shè)數(shù)列{an}是公差d不為0的等差數(shù)列,等比數(shù)列的公比為q,
由a1,a4,a5恰為某等比數(shù)列的前三項(xiàng),
即a1,a1+3d,a1+4d成等比數(shù)列,
可得${({{a_1}+3d})^2}={a_1}({{a_1}+4d})$,
解得${a_1}=-\frac{9}{2}d$,
即有q=$\frac{{a}_{4}}{{a}_{1}}$=$\frac{3d-\frac{9}{2}d}{-\frac{9}{2}d}$=$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查等比數(shù)列的中項(xiàng)的性質(zhì),考查等差數(shù)列的通項(xiàng)公式的運(yùn)用,化簡整理的運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知等差數(shù)列{an}滿足:a1+a5=4,則數(shù)列{2${\;}^{{a}_{n}}$}的前5項(xiàng)之積為1024(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,過點(diǎn)M(0,1)的橢圓 Γ:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$
(1)求橢圓 Γ的方程;
(2)已知直線l不過點(diǎn)M,與橢圓 Γ相交于P,Q兩點(diǎn),若△MPQ的外接圓是以PQ為直徑,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在平行四邊形ABCD中,AC與BD交于點(diǎn)O,E是線段OD的中點(diǎn),AE的延長線與CD相交于點(diǎn)F.若AB=2,$AD=\sqrt{2}$,∠BAD=45°,則$\overrightarrow{AF}•\overrightarrow{BE}$=( 。
A.$\frac{1}{2}$B.1C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=\frac{n}{a_n}$,Sn是數(shù)列{bn}的前n項(xiàng)和,不等式${S_n}+\frac{n}{{{2^{n+1}}}}>{(-1)^n}•a$對(duì)任意正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知數(shù)列{an}是單調(diào)遞減的等差數(shù)列,S6=S11,有以下四個(gè)結(jié)論:
(1)a9=0
(2)當(dāng)n=8或n=9時(shí),Sn取最大值
(3)存在正整數(shù)k使得Sk=0
(4)存在正整數(shù)m使得Sm=S2m
其中正確的是(1),(2),(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在等比數(shù)列{an}中,已知${a_2}=\frac{1}{2}\;,\;\;{a_5}=4$,則此數(shù)列的公式比為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若復(fù)數(shù)z滿足(-3+4i)$\overline{z}$=25i,其中i為虛數(shù)單位,則z=(  )
A.4-3iB.4+3iC.-5+3iD.3+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知定義在R上的函數(shù)y=f(x)滿足條件f(x+$\frac{3}{2}$)=-f(x),且函數(shù)y=f(x-$\frac{3}{4}$)為奇函數(shù),給出以下四個(gè)命題:
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(-$\frac{3}{4}$,0)對(duì)稱;
③函數(shù)f(x)為R上的偶函數(shù);
④函數(shù)f(x)為R上的單調(diào)函數(shù);
其中真命題的序號(hào)為①②③(寫出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案