(10分)設是定義在R上的偶函數(shù),其圖象關于對稱,對任意的,都有,且

 

(1)求

 

(2)證明:是周期函數(shù)。

 

【答案】

解:(1)因為對任意的,都有

 

所以

 

又因為

 

所以

 

(2)因為是定義在R上的偶函數(shù),其圖象關于對稱

所以

所以是周期為2的周期函數(shù)。

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

是定義在R上的偶函數(shù),且,當0≤≤1時,,則當5≤≤6時,的表達式為             學科網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省臨沂市蒼山縣高三上學期期末檢測理科數(shù)學試卷 題型:填空題

是定義在R上的偶函數(shù),滿足,且在[-1,0]上是增函數(shù),給出下列關于函數(shù)的判斷:①是周期函數(shù);②的圖像關于直線x=1對稱;③在[0,1]上是增函數(shù);其中所有正確判斷的序號是        。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省高三第一次月考數(shù)學理 題型:選擇題

是定義在R上的偶函數(shù),且在上是增函數(shù),已知,且

,那么一定有                                                                             (    )

       A.                                         B.        

       C.        D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年遼寧省瓦房店市高二4月月考數(shù)學理卷 題型:選擇題

是定義在R上的偶函數(shù),當時,,且,則不等式的解集為(    )

    A.(-1,0)∪(1,+)            B.(-1,0)∪(0,1)

  C.(-,-1)∪(1,+)     D.(-,-1)∪(0,1)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆福建省高二上學期期末考試文科數(shù)學試卷 題型:選擇題

是定義在R上的偶函數(shù),當時,,且,則不等式的解集為(     )

A.(-1,0)∪(1,+)                B.(-1,0)∪(0,1)

C.(-,-1)∪(1,+)         D.(-,-1)∪(0,1)

 

查看答案和解析>>

同步練習冊答案