過點(diǎn),傾斜角為的直線與圓C:(為參數(shù))相交于兩點(diǎn),試確定的值.
15.
解析試題分析:先將曲線:(圓)的參數(shù)方程化成普通方程,再將直線的參數(shù)方程代入其中,得到一個(gè)關(guān)于的一元二次方程,最后結(jié)合參數(shù)的幾何意義,利用一元二次方程的根與系數(shù)之間的關(guān)系式即可求得距離之積.
試題解析:由已知得直線的參數(shù)方程為(為參數(shù)),即(為參數(shù)) 3分曲線的普通方程為. 6分
把直線的參數(shù)方程代入曲線的普通方程,得∴點(diǎn)到兩點(diǎn)的距離之積為15. 10分
考點(diǎn):1.圓的參數(shù)方程;2.直線和圓相交有關(guān)計(jì)算.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
(坐標(biāo)系與參數(shù)方程)圓C的極坐標(biāo)方程為,則圓心的極坐標(biāo)為_______________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
過點(diǎn)P作傾斜角為α的直線與曲線x2+2y2=1交于點(diǎn)M、N,求|PM|·|PN|的最小值及相應(yīng)的α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C1: (t為參數(shù)),C2:
(θ為參數(shù)).
(1)化C1、C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點(diǎn)P對應(yīng)的參數(shù)為t=,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3: (t為參數(shù))距離的最小值.
解
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系中,是過定點(diǎn)且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,取相同單位長度)中,曲線的極坐標(biāo)方程為.
(I)寫出直線的參數(shù)方程;并將曲線的方程化為直角坐標(biāo)方程;
(II)若曲線與直線相交于不同的兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以坐標(biāo)原點(diǎn)O為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為:,曲線C2的參數(shù)方程為:,點(diǎn)N的極坐標(biāo)為.
(Ⅰ)若M是曲線C1上的動(dòng)點(diǎn),求M到定點(diǎn)N的距離的最小值;
(Ⅱ)若曲線C1與曲線C2有有兩個(gè)不同交點(diǎn),求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(Ⅰ)將圓的參數(shù)方程化為普通方程,將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)圓、是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,求過橢圓(為參數(shù))的右焦點(diǎn)且與直線(為參數(shù))平行的直線的普通方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
選修4—4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線,
過點(diǎn)A(5,α)(α為銳角且)作平行于的直線,且與曲線L分別交于B,C兩點(diǎn)。
(Ⅰ)以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸,取與極坐標(biāo)相同單位長度,建立平面直角坐標(biāo)系,寫出曲線L和直線的普通方程;
(Ⅱ)求|BC|的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com