(本小題滿分14分)已知等差數(shù)列的前四項(xiàng)和為10,且成等比數(shù)列
(1)求通項(xiàng)公式
(2)設(shè),求數(shù)列的前項(xiàng)和
;⑵

試題分析:(1) 由等差數(shù)列的前四項(xiàng)和為10,且成等比數(shù)列,可建立關(guān)于a1和d的方程,求出a1和d的值,進(jìn)而得到其通項(xiàng)公式;
(2)再(1)的基礎(chǔ)上,可求出,當(dāng)時(shí),直接根據(jù)等比數(shù)列的前n項(xiàng)和公式直接求出其前n項(xiàng)和.當(dāng)時(shí),它是常數(shù)列,顯然和易求.
⑴由題意知

所以
⑵當(dāng)時(shí),數(shù)列是首項(xiàng)為、公比為8的等比數(shù)列
所以
當(dāng)時(shí),所以
綜上,所以
點(diǎn)評:本小題用到的公式有:(1)等差數(shù)列的前n項(xiàng)和公式:;(2)等比數(shù)列的前n項(xiàng)和公式:.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知數(shù)列為等差數(shù)列,且  
(1)求數(shù)列的通項(xiàng)公式;
(2)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知數(shù)列的首項(xiàng),,….
(Ⅰ)證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若數(shù)列是正項(xiàng)數(shù)列,且,則
               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列則它的公差是(    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)在等差數(shù)列中,,前項(xiàng)和為,等比數(shù)列各項(xiàng)均為正數(shù),,且,的公比
(1)求;(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
在等差數(shù)列中,已知。
(Ⅰ)求通項(xiàng)和前n項(xiàng)和;
(Ⅱ)求的最大值以及取得最大值時(shí)的序號的值;
(Ⅲ)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列等于 (    )
A.22B.18 C.20D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

將數(shù)列的各項(xiàng)按照第1行排,第2行自左至右排,第3行…的規(guī)律,排成如圖所示的三角形形狀.

(Ⅰ)若數(shù)列是首項(xiàng)為1,公差為3的等差數(shù)列,寫出圖中第五行第五個(gè)數(shù);
(Ⅱ)若函數(shù),求數(shù)列的通項(xiàng)公式;
(Ⅲ)設(shè)為圖中第行所有項(xiàng)的和,在(Ⅱ)的條件下,用含的代數(shù)式表示

查看答案和解析>>

同步練習(xí)冊答案