【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)上的最大值;

(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng)時,函數(shù)的圖象與軸交于兩點,且,又的導(dǎo)函數(shù).若正常數(shù)滿足條件.試比較與0的關(guān)系,并給出理由.

【答案】(1)-1;(2);(3)見解析.

【解析】試題分析:(1)根據(jù)導(dǎo)數(shù),即可得出函數(shù)的單調(diào)性,從而得到函數(shù)的最大值.

(2)由在區(qū)間單調(diào)遞增函數(shù),所以在(0,3)恒成立,分離參數(shù)得出,即可求解實數(shù)的取值范圍.

(3)由題意得有兩個實根,化簡可得,可得,只需證明

,設(shè)即可得到

試題解析:

(1)

函數(shù)在[,1]是增函數(shù),在[1,2]是減函數(shù),

所以

(2)因為,所以,

因為在區(qū)間單調(diào)遞增函數(shù),所以在(0,3)恒成立

,有=,(

綜上:

(3)與0的關(guān)系為: 理由如下:

,又有兩個實根,

,兩式相減,得

,

于是

要證: ,只需證:

只需證:.(*)

,∴(*)化為 ,只證即可.

在(0,1)上單調(diào)遞增,,

.∴

(其他解法根據(jù)情況酌情給分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點,橢圓的左,右頂點分別為.過點的直線與橢圓交于兩點,且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側(cè)的動點,且滿足,試問直線的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如下表所示:

積極參加班級工作

不積極參加班級工作

合計

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性不高

6

19

25

合計

24

26

50

(1)如果隨機調(diào)查這個班的一名學(xué)生,那么抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?

(2)若不積極參加班級工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項活動,問兩名學(xué)生中有1名男生的概率是多少?

(3)學(xué)生的學(xué)習(xí)積極性與對待班極工作的態(tài)度是否有關(guān)系?請說明理由.

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防流感,某學(xué)校對教室用藥熏消毒法進行消毒,已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間t(小時)成正比;藥物釋放完畢后,yt的函數(shù)關(guān)系式為 (a為常數(shù)),如圖所示.根據(jù)圖中提供的信息,回答下列問題:

(1)從藥物釋放開始,每立方米空氣中的含藥量y(毫克)與時間t(小時)之間的函數(shù)關(guān)系式為_________;

(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時,學(xué)生方可進教室,那么從藥物釋放開始,至少需要經(jīng)過_________小時后,學(xué)生才能回到教室.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產(chǎn)量

(1)將利潤表示為月產(chǎn)量的函數(shù)

(2)當(dāng)月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤是多少元?(總收益=總成本+利潤)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】屆夏季奧林匹克運動會將于 2016 8 5 21 日在巴西里約熱內(nèi)盧舉行.下表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)( 單位: 枚).

倫敦

北京

屆雅典

屆悉尼

屆亞特蘭大

中國

俄羅斯

(1)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運會兩國代表團獲得的金牌數(shù)的莖葉圖, 并通過莖葉圖比較兩國代表團獲得的金牌數(shù)的平均值及分散程度( 不要求計算出具體數(shù)值, 給出結(jié)論即可);

(2)甲、 乙、 丙三人競猜今年中國代表團和俄羅斯代表團中的哪一個獲得的金牌數(shù)多( 假設(shè)兩國代表團獲得的金牌數(shù)不會相等) , 規(guī)定甲、 乙、 丙必須在兩個代表團中選一個, 已知甲、 乙猜中國代表團的概率都為 丙猜中國代表團的概率為 , 三人各自猜哪個代表團的結(jié)果互不影響.現(xiàn)讓甲、 乙、 丙各猜一次, 設(shè)三人中猜中國代表團的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大家知道, 莫言是中國首位獲得諾貝爾獎的文學(xué)家, 國人歡欣鼓舞.某高校文學(xué)社從男女生中各抽取名同學(xué)調(diào)查對莫言作品的了解程度, 結(jié)果如下:

閱讀過莫言的作品數(shù)(

男生

女生

(1)試估計該校學(xué)生閱讀莫言作品超過篇的概率;

(2)對莫言作品閱讀超過篇的則稱為對莫言作品非常了解 , 否則為 一般了解 .根據(jù)題意完成下表, 并判斷能否在犯錯誤的概率不超過的前提下, 認為對莫言作品非常了解與性別有關(guān)?

非常了解

一般了解

合計

男生

女生

合計

附:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進節(jié)能減排,國家鼓勵消費者購買新能源汽車,某校研究性學(xué)習(xí)小組,從汽車市場上隨機選取了輛純電動乘用車,根據(jù)其續(xù)駛里程(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計表:

(1)求的值;

(2)若用分層抽樣的方法從這輛純電動乘用車中抽取一個容量為6的樣本,從該樣本中任選2輛,求選到的2輛車續(xù)駛里程為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修:不等式選講

已知函數(shù)fx=|2x+3|+|2x﹣1|

)求不等式fx)<8的解集;

若關(guān)于x的不等式fx≤|3m+1|有解,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案