精英家教網 > 高中數學 > 題目詳情
已知單調遞增的等比數列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若bn=anlogan,Sn=b1+b2+b3+…+bn,對任意正整數n,Sn+(n+m)an+1<0恒成立,試求m的取值范圍.
【答案】分析:(1)設等比數列{an}的首項為a1,公比為q,根據2(a3+2)=a2+a4,可求得a3.進而求得a2+a4=20.兩式聯(lián)立方程即可求得a1和q的值,最后根據等比數列的通項公式求得an
(2)把(1)中的an代入bn,再利用錯位相減法求得Sn,再由Sn+(n+m)an+1<0恒成立進而求得m的范圍.
解答:解:(1)設等比數列{an}的首項為a1,公比為q.
依題意,
有2(a3+2)=a2+a4,
代入a2+a3+a4=28,
得a3=8.
∴a2+a4=20.

解之得,或
又{an}單調遞增,
∴q=2,a1=2,∴an=2n,
(2)bn=2n•log2n=-n•2n,
∴-Sn=1×2+2×22+3×23++n×2n
-2Sn=1×22+2×23++(n-1)2n+n•2n+1
①-②得,Sn=2+22+23++2n-n•2n+1
=-n•2n+1
=2n+1-2-n•2n+1
由Sn+(n+m)an+1<0,
即2n+1-2-n•2n+1+n•2n+1+m•2n+1<0對任意正整數n恒成立,
∴m•2n+1<2-2n+1
對任意正整數n,
m<-1恒成立.
-1>-1,∴m≤-1.
即m的取值范圍是(-∞,-1].
點評:本題主要考查等比數列的性質.本題考查了學生綜合運算的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知單調遞增的等比數列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(1)求數列{an}的通項公式;
(2)若bn=an•log 
12
an,Sn=b1+b2+…+bn,求使Sn+n•2Pn+1>50成立的正整數n的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知單調遞增的等比數列an滿足:a2+a3+a4=28,且a3+2是a2、a4的等差中項,則數列an的前n項和Sn=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知單調遞增的等比數列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設bn=anlog
12
an,求數列{bn}
的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知單調遞增的等比數列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若bn=anlog 
12
an,Sn=b1+b2+b3+…+bn,對任意正整數n,Sn+(n+m)an+1<0恒成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知單調遞增的等比數列{an}滿足a2+a3+a4=28,a3+2是a2,a4的等差中項.
(1)求數列{an}的通項公式;
(2)設bn=-nan,求數列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案