7、函數(shù)f(x)=x2-2x+2,x∈[0,3)的值域?yàn)?div id="ps8k7hm" class="quizPutTag">[1,5)
分析:通過對二次函數(shù)配方求出對稱軸,判斷出函數(shù)在定義域上的單調(diào)性,求出對稱軸處的函數(shù)值及兩個端點(diǎn)處的函數(shù)值,求出值域.
解答:解:f(x)=x2-2x+2=(x-1)2+1
對稱軸為x=1
所以f(x)在[0,1]單調(diào)遞減;在[1,3)上單調(diào)遞增
所以當(dāng)x=1時,函數(shù)有最小值為1;當(dāng)x=3時函數(shù)值為5
所以函數(shù)的值域?yàn)閇1,5)
故答案為{1,5)
點(diǎn)評:解決與二次函數(shù)的性質(zhì)問題,關(guān)鍵是求出二次函數(shù)的對稱軸,判斷出對稱軸與所給區(qū)間的位置關(guān)系,判斷出函數(shù)在給定區(qū)間上的單調(diào)性.
練習(xí)冊系列答案
  • 1加1閱讀好卷系列答案
  • 專項(xiàng)復(fù)習(xí)訓(xùn)練系列答案
  • 初中語文教與學(xué)閱讀系列答案
  • 閱讀快車系列答案
  • 完形填空與閱讀理解周秘計劃系列答案
  • 英語閱讀理解150篇系列答案
  • 奔騰英語系列答案
  • 標(biāo)準(zhǔn)閱讀系列答案
  • 53English系列答案
  • 考綱強(qiáng)化閱讀系列答案
  • 年級 高中課程 年級 初中課程
    高一 高一免費(fèi)課程推薦! 初一 初一免費(fèi)課程推薦!
    高二 高二免費(fèi)課程推薦! 初二 初二免費(fèi)課程推薦!
    高三 高三免費(fèi)課程推薦! 初三 初三免費(fèi)課程推薦!
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    已知函數(shù)f(x)=x2-ax+4+2lnx
    (I)當(dāng)a=5時,求f(x)的單調(diào)遞減函數(shù);
    (Ⅱ)設(shè)直線l是曲線y=f(x)的切線,若l的斜率存在最小值-2,求a的值,并求取得最小斜率時切線l的方程;
    (Ⅲ)若f(x)分別在x1、x2(x1≠x2)處取得極值,求證:f(x1)+f(x2)<2.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    函數(shù)f(x)=x2+2x在[m,n]上的值域是[-1,3],則m+n所成的集合是( 。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知二次函數(shù)f(x)=x2-2x-3的圖象為曲線C,點(diǎn)P(0,-3).
    (1)求過點(diǎn)P且與曲線C相切的直線的斜率;
    (2)求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    函數(shù)f(x)=-x2+2x,x∈(0,3]的值域?yàn)?!--BA-->
    [-3,1]
    [-3,1]

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)函數(shù)f(x)=x2+
    12
    x
    +lnx的導(dǎo)函數(shù)為f′(x),則f′(2)=
    5
    5

    查看答案和解析>>

    同步練習(xí)冊答案