8.已知二次函數(shù)f(x)=ax2+bx+1,若f(-1)=1且f(x)<2恒成立,則實(shí)數(shù)a的取值范圍是(-4,0].

分析 f(x)<2可化為ax2+ax-1<0.討論a是否為0,不為0時(shí),根據(jù)開口方向和判別式建立不等式組,解之即可求出所求.

解答 解:∵f(-1)=1,∴a-b+1=1,∴b=a,
f(x)<2可化為ax2+ax-1<0
當(dāng)a=0時(shí),-1<0恒成立,故滿足條件;
當(dāng)a≠0時(shí),對(duì)于任意實(shí)數(shù)x,不等式ax2-ax-1<0恒成立
則$\left\{\begin{array}{l}{a<0}\\{{a}^{2}+4a<0}\end{array}\right.$,解得-4<a<0
綜上所述,-4<a≤0
故答案為:(-4,0].

點(diǎn)評(píng) 本題主要考查了一元二次不等式的應(yīng)用,以及恒成立問題,同時(shí)考查了分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,AB=2CB=2,∠ABC=60°,在梯形ACEF中,EF∥AC,且AC=2EF=2EC,EC⊥平面ABCD.
(Ⅰ)求證:AC⊥BE;
(Ⅱ)求BF與平面ACEF所成的角的正切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=x2+2x-4+$\frac{a}{x}$.
(1)若a=4,求f(x)的單調(diào)區(qū)間.
(2)若f(x)有三個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)={cos^2}(ωx+φ)-\frac{1}{2}$,$(ω>0,0<φ<\frac{π}{2})$.若f(x)的最小正周期為π,且$f(\frac{π}{8})=\frac{1}{4}$.
(Ⅰ)求ω和φ的值;
(Ⅱ)求函數(shù)f(x)在區(qū)間$[{\frac{π}{24},\frac{13π}{24}}]$上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.定義在R上的函數(shù)f(x)滿足f′(x)<1,f(1)=2,則滿足f(2x-1)<2x的x的范圍是( 。
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知拋物線C:y2=2px(p>0)的準(zhǔn)線是直線l:x=-2,焦點(diǎn)是F.
(1)求拋物線C的方程.
(2)若l與x軸交于點(diǎn)A,點(diǎn)M在拋物線C上,且M到焦點(diǎn)F的距離為8,求△AFM的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知拋物線C:x2=4y,點(diǎn)M(x0,y0)滿足$x_0^2<4{y_0}$,則直線l:x-x0=t(y-y0),(t∈R)與拋物線C公共點(diǎn)的個(gè)數(shù)是(  )
A.0B.1C.2D.1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=$\frac{1}{2}$x2-alnx(a∈R)在(1,+∞)上是增函數(shù),則a的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=4x2-2(p-2)x-2p2-p+1在區(qū)間[-1,1]上存在實(shí)數(shù)x0,使f(x0)>0,試求實(shí)數(shù)p的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案