在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn)在直線(xiàn)上運(yùn)動(dòng),過(guò)點(diǎn)垂直的直線(xiàn)和線(xiàn)段的垂直平分線(xiàn)相交于點(diǎn)
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(guò)(1)中的軌跡上的定點(diǎn)作兩條直線(xiàn)分別與軌跡相交于,兩點(diǎn).試探究:當(dāng)直線(xiàn)的斜率存在且傾斜角互補(bǔ)時(shí),直線(xiàn)的斜率是否為定值?若是,求出這個(gè)定值;若不是,說(shuō)明理由.
(1) (2) 當(dāng)直線(xiàn),的斜率存在且傾斜角互補(bǔ)時(shí),直線(xiàn)的斜率為定值

試題分析:(1)由線(xiàn)段垂直平分線(xiàn)的性質(zhì)知, ,所以動(dòng)點(diǎn)的軌跡是以為焦點(diǎn),直線(xiàn)為準(zhǔn)線(xiàn)的拋物線(xiàn).易知其標(biāo)準(zhǔn)方程為.
設(shè)、,可由點(diǎn)差法求出,
,
由直線(xiàn),的傾斜角互補(bǔ),得
定值
試題解析:(1)依題意,得                               1分
∴動(dòng)點(diǎn)的軌跡是以為焦點(diǎn),直線(xiàn)為準(zhǔn)線(xiàn)的拋物線(xiàn)         3分
∴動(dòng)點(diǎn)的軌跡的方程為                     4分
(2)∵、,在拋物線(xiàn)
                                          5分
由①-②得,
∴直線(xiàn)的斜率為                7分
同理可得,直線(xiàn)的斜率為                9分
∴當(dāng)直線(xiàn),的傾斜角互補(bǔ)時(shí),有

                                     11分
由②-③得,
∴直線(xiàn)的斜率為    ④      13分
代入④,得
∴當(dāng)直線(xiàn),的斜率存在且傾斜角互補(bǔ)時(shí),直線(xiàn)的斜率為定值    14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)為雙曲線(xiàn)的左、右焦點(diǎn),過(guò)作垂直于軸的直線(xiàn),在軸上方交雙曲線(xiàn)于點(diǎn),且.圓的方程是
(1)求雙曲線(xiàn)的方程;
(2)過(guò)雙曲線(xiàn)上任意一點(diǎn)作該雙曲線(xiàn)兩條漸近線(xiàn)的垂線(xiàn),垂足分別為、,求的值;
(3)過(guò)圓上任意一點(diǎn)作圓的切線(xiàn)交雙曲線(xiàn)兩點(diǎn),中點(diǎn)為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)分別是橢圓的左、右焦點(diǎn), 點(diǎn)在橢圓上上.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線(xiàn)、均與橢圓相切,試探究在軸上是否存在定點(diǎn),點(diǎn)的距離之積恒為1?若存在,請(qǐng)求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓經(jīng)過(guò)點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左、右焦點(diǎn)分別為,過(guò)點(diǎn)的直線(xiàn)交橢圓兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:的一個(gè)焦點(diǎn)是(1,0),兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)Q(4,0)且不與坐標(biāo)軸垂直的直線(xiàn)l交橢圓C于A(yíng)、B兩點(diǎn),設(shè)點(diǎn)A關(guān)于x軸的
對(duì)稱(chēng)點(diǎn)為A1.求證:直線(xiàn)A1B過(guò)x軸上一定點(diǎn),并求出此定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓上的點(diǎn)到其兩焦點(diǎn)距離之和為,且過(guò)點(diǎn)
(Ⅰ)求橢圓方程;
(Ⅱ)為坐標(biāo)原點(diǎn),斜率為的直線(xiàn)過(guò)橢圓的右焦點(diǎn),且與橢圓交于點(diǎn),,若,求△的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)為F1,F(xiàn)2,橢圓上一點(diǎn)M
滿(mǎn)足.
(1)求橢圓的方程;
(2)若直線(xiàn)L:y=與橢圓恒有不同交點(diǎn)A,B,且(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)k的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線(xiàn)與曲線(xiàn)的交點(diǎn)個(gè)數(shù)是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

過(guò)點(diǎn)且和拋物線(xiàn)相切的直線(xiàn)方程為                  .

查看答案和解析>>

同步練習(xí)冊(cè)答案